Draft For Public Review

Former ASARCO East Helena Facility Interim Measures Work Plan—2015 and 2016

Prepared for

The Montana Environmental Trust Group, LLC Trustee of the Montana Environmental Custodial Trust

February 2015

7 West 6th Avenue Suite 519 Helena, Montana 59601

Sectio	n		Page
Acron	yms and	d Abbreviations	vii
1	Introd	luction	1-1
	1.1	Summary of Interim Measures	1-1
	1.2	Work Completed to Date	
	1.3	Interim Measures Coordination	
		1.3.1 Implementation Schedule and Work Planning	1-2
		1.3.2 Performance Evaluation to Date	
	1.4	Proposed Activities	1-3
	1.5	Work Plan Summary	
2	Overv	view of Proposed 2015 and 2016 Interim Measures Implementation	2-1
	2.1	South Plant Hydraulic Control Interim Measure: Prickly Pear Creek Realignment	
		2.1.1 PPC Realignment	
		2.1.2 Wetlands Establishment	
	2.2	ET Cover System Interim Measure: Interim Cover System 2 and ET Cover East and W	
		Construction	
		2.2.1 Proposed Activities	
		2.2.2 Monitoring Network Modification	
3	Undat	ted Conceptual Site Model	3-1
•	3.1	Groundwater Levels	3-1
	0.1	3.1.1 Upper Lake Marsh Area Groundwater Levels	
		3.1.2 Main Plant Site Groundwater Levels	
	3.2	Arsenic and Selenium in Groundwater	
4	Data	Sufficiency	
-	4.1	Summary of Existing Data	
	4.2	Additional Data Requirements for 2015 and 2016 Work	
5	Engin	eering Design and Construction Information for Proposed 2015 and 2016 Projects	5_1
5	5.1	Prickly Pear Creek Realignment	
	5.1	5.1.1 Key Design Objectives	
		5.1.2 Design and Construction Features	
		5.1.3 Construction and Quality Management	
		5.1.4 Preliminary List of Drawings and Specifications	
	5.2	Phase 3 Demolition	
	5.2	5.2.1 Key Design Objectives	
		5.2.2 Design and Construction Features	
		5.2.3 Construction and Quality Management	
		5.2.4 Preliminary List of Drawings and Specifications	
	5.3	Interim Cover System 2	
	010	5.3.1 Key Design Objectives	
		5.3.2 Design and Construction Features	
		5.3.3 Construction and Quality Management	
	5.4	ET Cover System (East and West)	
		5.4.1 Key Design Objectives	
		5.4.2 Design and Construction Features	

Section					
		5.4.3	Construction and Quality Management	. 5-9	
	5.5		Standards for Surface Soil		
6	Remediation Waste Management6-1				
	6.1	Use of t	he Area of Contamination	.6-1	
	6.2	Remedia	ation Waste Management in 2015 and 2016	.6-1	
		6.2.1	Prickly Pear Creek Realignment	.6-1	
			Phase 3 Demolition		
		6.2.3	Interim Cover System and ET Cover System Construction	. 6-3	
7	Status o	of Permit	tting Activities and Approvals	.7-1	
	7.1	Past Per	mitting and Authorization Activities	.7-1	
		7.1.1	Joint Application and Conditional Letter of Map Revision	. 7-1	
		7.1.2	Floodplain Development Permit	.7-1	
			Montana Dam Safety Act		
			National Emissions Standards for Hazardous Air Pollutants (NESHAP) Compliance		
			Montana Pollutant Discharge Elimination System Permits		
	7.2	•	ated 2015 and 2016 Permitting and Authorization Activities		
			Joint Application No. 2 and CLOMR No. 2		
			310 Permit		
			318 Authorization		
			Floodplain Development Permit		
			MPDES Permits		
			Montana Department of Transportation Permits		
			Montana Water Use Act (Water Right Permit and Change Authorization)		
			City of East Helena — Partial Abandonment of South Montana Avenue		
		7.2.9	Migratory Bird Treaty Act	.7-5	
8			ment and Schedule		
	8.1	Organization and Lines of Communication			
	8.2	Public P	articipation	.8-1	
	8.3		entation and Reporting		
	8.4	Prelimin	nary Interim Measure Implementation Schedule	.8-2	
9	Referer	nces	•	.9-1	

Appendixes

- A Design Details and Supporting Documentation
- B Technical Memorandum: Evapotranspiration Cover System Design for the East Helena Former ASARCO Smelter Site
- C Public Comments Received on the 2015/2016 Interim Measures Work Plan with U.S. Environmental Protection Agency Responses and Conditional Letter of Approval

Tables

3-1	Upper Lake Marsh Area Groundwater-Level Response to Completed Interim Measures	3-2
3-2	South and West Plant Site Groundwater-Level Response to Completed Interim Measures	3-3
5-1	Cleanup Standards for Arsenic and Lead in Surface Soil	5-10
6-1	Interim Measures Remediation Waste Management	6-2
8-1	Interim Measure Consultant Leads	8-1
8-2	Summary of Proposed 2015 and 2016 Implementation Schedule	8-3

Figures (located at the end of their respective sections)

- 1-1 Interim Measures Components Proposed for Implementation in 2015
- 1-2 Interim Measures Components Proposed for Implementation in 2016
- 1-3 Phase 3 Demolition Activities
- 2-1 Channel and Floodplain Areas of Excavation Proposed in 2015
- 2-2 Channel and Floodplain Areas of Excavation Proposed in 2016
- 2-3 Prickly Pear Creek Wetlands Replacement Plan
- 2-4 ET Cover and Interim Cover System 2 Cross-Section
- 3-1 Plant Site Area Monitoring Wells/Piezometers
- 3-2 Groundwater Elevation Trends in Upper Lake Marsh
- 3-3 Groundwater Elevation Trends in Plant Site Wells
- 3-4 June 2014 Dissolved Arsenic Plume
- 3-5 June 2014 Dissolved Selenium Plume
- 6-1 Area of Contamination Boundary
- 8-1 Project Organization and Lines of Communication

Acronyms and Abbreviations

AOC	Area of Contamination
APP	Avian Protection Plan
ARM	Administrative Rules of Montana
CAMP	Corrective Action Monitoring Plan
CAMU	Corrective Action Management Unit
CLOMR	Conditional Letter of Map Revision
CMS	Corrective Measures Study
COEH	City of East Helena
СОРС	constituent of potential concern
CSM	conceptual site model
Custodial Trust	Montana Environmental Custodial Trust
EHECTIC	East Helena Entire Cleanup Team in Coordination
ERM	Environmentally Regulated Material
ESA	Endangered Species Act
ET	evapotranspiration
F&T	fate and transport
FEMA	Federal Emergency Management Agency
HDS	high-density sludge
HEC-RAS	Hydrologic Engineering Centers River Analysis System
ICS	Interim Cover System
ICS 1	Interim Cover System 1 completed in November 2014
ICS 2	Interim Cover System 2 proposed for completion in 2015
IM	interim measure
IM Work Plan 2012	Interim Measures Work Plan 2012
IM Work Plan 2013	Interim Measures Work Plan 2013
IM Work Plan 2014	Interim Measures Work Plan 2014
IM Work Plan 2015/2016	Interim Measures Work Plan 2015 and 2016
Joint Application	Joint Application for Proposed Work in Montana's Streams, Wetlands, Floodplains, and Other Waterbodies
LCCD	Lewis and Clark Conservation District
MBTA	Migratory Bird Treaty Act
MCL	maximum contaminant level
MDEQ	Montana Department of Environmental Quality

MDT	Montana Department of Transportation
mg/kg	milligram(s) per kilogram
mg/L	milligram(s) per liter
MPDES	Montana Pollutant Discharge Elimination System
NOI	Notice of Intent
NWE	NorthWestern Energy
OU	Operable Unit
РСВ	polychlorinated biphenyl
РРС	Prickly Pear Creek
QA/QC	quality assurance and quality control
RCRA	Resource Conservation and Recovery Act
RFI	RCRA Facility Investigation
ROD	Record of Decision
SPHC	South Plant Hydraulic Control
SWPPP	Stormwater Pollution Prevention Plan
ТРА	Tito Park Area
TSCA	Toxic Substances Control Act
ULM	Upper Lake Marsh
UOSA	Upper Ore Storage Area
U.S.	United States
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service
WTP	water treatment plant
γd ³	cubic yard(s)

Introduction

The purpose of this Interim Measures Work Plan 2015 and 2016 (IM Work Plan 2015/2016) is to provide information to support U.S. Environmental Protection Agency (USEPA) approval of the remaining interim measures (IMs) phases proposed for implementation in 2015 and 2016 at the East Helena Facility (Facility). This IM Work Plan 2015/2016 focuses on work proposed and as appropriate, updates information presented in the preceding IM Work Plans submitted from 2012 through 2014 (IM Work Plan 2012, CH2M HILL, 2012a; IM Work Plan 2013, CH2M HILL, 2013; and IM Work Plan 2014, CH2M HILL, 2014a).

1.1 Summary of Interim Measures

The three interrelated, interdependent IMs were proposed at the Facility in concept in the IM Work Plan 2012 and subsequently approved by USEPA on August 28, 2012. Components of these IMs have been completed as further described in the IM Work Plan 2013 and IM Work Plan 2014 approved by USEPA on January 21, 2013, and April 28, 2014, respectively. The primary purpose of the IMs is to reduce the migration of contaminants in groundwater from the operating area of the former ASARCO Smelter (former Smelter site) in order to protect public health and the environment. The three IMs are summarized as follows:

- The South Plant Hydraulic Control IM (SPHC IM) is proposed to reduce the migration of inorganic contaminants in groundwater by changing the hydrogeologic conditions at the southern end of the former Smelter site.
- The Source Removal IM is proposed to reduce the mass loading of contaminants to groundwater by reducing the volume of soil with high concentrations of inorganic contaminants that are subject to infiltration or flow-through and subsequent leaching to groundwater.
- The Evapotranspiration Cover System IM (ET Cover System IM) is proposed to further reduce the
 potential for inorganic soil contaminants to leach to groundwater by eliminating or substantially
 reducing the amount of infiltration through contaminated materials and providing a clean surface for
 runoff. The ET Cover System IM will also eliminate human and ecological receptor exposure to inorganiccontaminated soil.

1.2 Work Completed to Date

Implementation of the three IMs is occurring in phases over a number of years. The following phases have been implemented since 2012:

- SPHC IM: Relocation of utilities and subsequent construction of the Temporary Bypass for Prickly Pear Creek (PPC) (PPC Temporary Bypass) was completed to route PPC flow around Smelter Dam. The groundwater levels in the South Plant area was lowered substantially, enabling removal of the Tito Park Area (TPA) (see discussion under Source Removal IM below), and potentially enabling construction of the new PPC channel (also referred to as PPC Realignment) in mostly dry conditions. Construction of the PPC Temporary Bypass began in July 2013 and was completed in October 2013.
- Source Removal IM—Tito Park Area Removal: Removal of contaminated soil from the TPA, which consists of Tito Park, Upper Ore Storage Area (UOSA), Acid Plant Sediment Drying Area (APSD Area), and Lower Lake. The soil was removed to eliminate the potential for inundation and erosion from potential PPC flooding, meet the functional needs of the PPC Realignment, support the development of wetland habitat in the PPC floodplain, and reduce the overall footprint of the ET Cover System. The final design of the TPA removal provides flexibility in the construction and ultimate performance of the PPC Realignment, which is critical to the implementation of the SPHC IM. Removal of contaminated soil from the TPA was completed in October 2014.

• ET Cover System IM: Phase 1 and Phase 2 demolition of the buildings and infrastructure on the former Smelter site and subsequent construction of the first phase of the ET Cover System (Interim Cover System 1 [ICS 1]) to serve as the foundation layer of the western portion of the ET Cover (referred to as ET Cover West). Phase 1 demolition was completed in July 2013 and Phase 2 demolition was completed in October 2013. The ICS 1 was completed in November 2014.

1.3 Interim Measures Coordination

Although three IMs are proposed, the IMs are designed to work in conjunction with one another to reduce contaminant loading to groundwater and subsequent migration of groundwater contamination.

1.3.1 Implementation Schedule and Work Planning

The IM phases described in this work plan are proposed for concurrent implementation in 2015 and 2016 to increase the protectiveness, efficiency, and cost-effectiveness of construction activities. The overall schedule for completion is driven by the size and complexity of the PPC Realignment, with consideration to the large volume of material that will be excavated during construction of the new channel. The PPC Realignment work is being done concurrently with the ICS 2 and ET Cover so that materials managed from excavation activities as part of the PPC Realignment may be consolidated within the USEPA-approved AOC as fill to construct the ET Cover System. The following additional benefits will result:

- Protection of human health and the environment during construction by decreasing the potential for contact with contaminated media by human and ecological receptors, and stormwater
- Reduction in overall construction cost by minimizing the need to double-handle soil (i.e., eliminating the need to temporarily stockpile soil before placing it in the final location)
- Reduction in the cost of constructing the ET Cover System by using materials excavated from the PPC realignment as fill

1.3.2 Performance Evaluation to Date

Because the IMs are intended to be part of the final remedy for the Facility, groundwater monitoring is underway to evaluate their performance. To date, monitoring results show that the completed phases of the SPHC IM have lowered groundwater levels in the southern portion of the former Smelter site and reduced mass loading of inorganic contamination to groundwater. Wells located in the South Plant area report an average 7-foot drop in groundwater levels; wells located in the former Acid Plant area near the southern portion of the former Smelter site report an average 5-foot or greater drop in groundwater levels. A sustained drop in groundwater elevations has been noted since inflow to Upper Lake was cut off in 2011 (more detail is provided in Section 3.2). Decreases in arsenic and selenium concentrations are also noted in the former Acid Plant area (a summary is provided in Section 3.2.1). Continued performance of the IMs will be evaluated as part of the Corrective Measures Study (CMS), and long-term monitoring plans will be designed to evaluate IM performance over time.

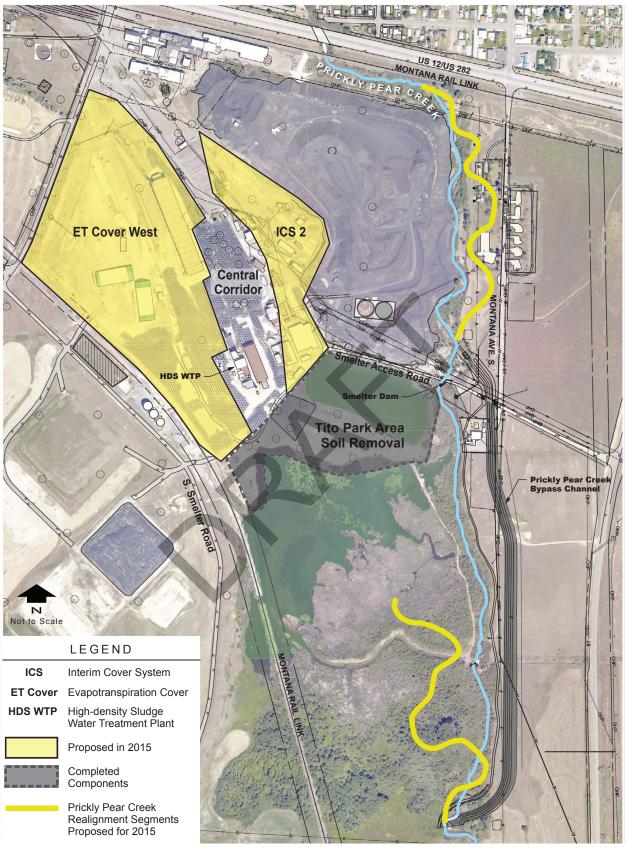
Additional benefits shown in groundwater evaluations include a reduction in the potential for mass loading to groundwater and a decrease in volumes of contact- stormwater (stormwater that contacts the existing site area and becomes contaminated). The removal of contaminated soil from the TPA has eliminated the potential for future flooding to inundate the contaminated soil and subsequently mobilize the inorganic contaminants to groundwater. Speiss material, which is a high arsenic process waste generated from smelter operations, in the South Plant area was removed and disposed of in the existing Corrective Action Management Unit (CAMU) 2 landfill, eliminating contact and subsequent leaching of contaminants to groundwater. Completion of the ICS 1 has reduced the amount of contaminated stormwater collected and treated at the former Smelter site in the range of 500,000 gallons.

1.4 Proposed Activities

Figures 1-1 and 1-2 show the phases to be completed in 2015 and 2016, respectively, with the exception of the Phase 3 demolition activities; those are presented in **Figure 1-3**. The activities presented herein are submitted for USEPA review and approval as well as public review and comment:

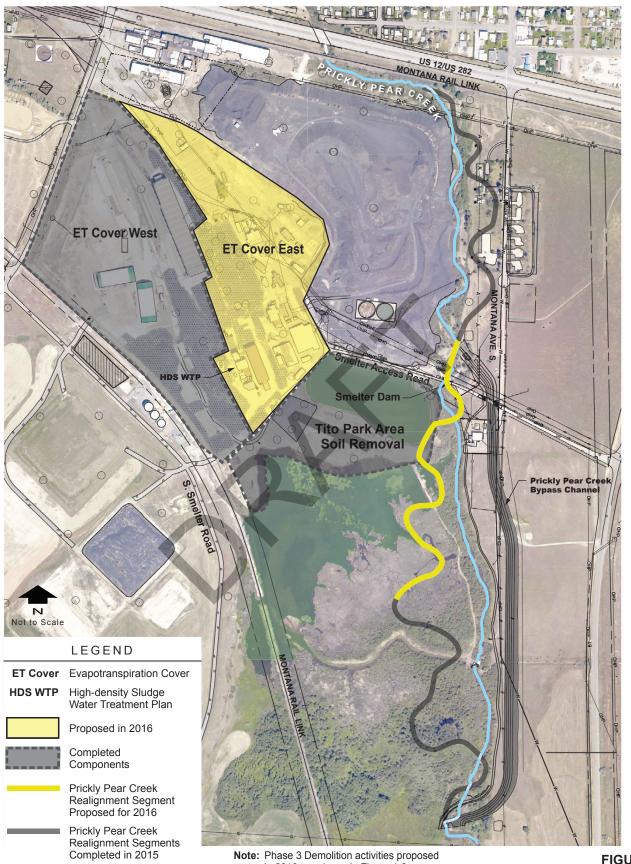
- PPC Realignment and Wetlands Establishment: In 2015 and 2016, the PPC channel will be realigned to lower the groundwater table, and wetlands along the southern portion of PPC will be established. Materials excavated during construction of the PPC Realignment will be used to construct the ET Cover System. The PPC Temporary Bypass will remain in place until 2023 to aid in controlling stream flow and reducing the risk for flooding. After 2023, the wetlands will be sufficiently established to provide flooding protection and maintain stream flow.
- ICS 2 and ET Cover System IM: In 2015, the ET Cover System will be completed over the ICS 1 (ET Cover West), and the second phase of the ICS (referred to as ICS 2) will be constructed over the eastern portion of the former Smelter site. An open corridor (the central corridor) will be maintained for additional investigative work in support of the on-going Tier II source control measure/groundwater remedy evaluation (Figure 1-1). If any Tier II source control measures/groundwater remedies are determined to be necessary to augment the overall remedy, they could be integrated into the overall remedy either in conjunction with the three planned IMs, or as a supplement to the IMs based on IM performance. The ICS 2 will protectively manage soil and sediment removed during construction of the PPC Realignment and at the same time establish the subgrade for the eastern portion of the ET Cover System (referred to as ET Cover East). In 2016, the ET Cover East will be completed over the remaining areas to include the ICS 2 and central corridor (Figure 1-2). The ET Cover System IM will be designed to manage the excess borrow soil generated by the PPC Realignment activities.
- Phase 3 Demolition: The primary purpose of Phase 3 demolition activities is to provide a clear footprint in which to construct the ICS 2 and ET Cover East. In 2015, infrastructure within the ICS 2 footprint will be demolished to provide sufficient time to complete ICS 2 construction. In 2016, infrastructure within the central corridor will be demolished to accommodate the ET Cover East (Figure 1-3). Demolition activities associated with components of the high-density sludge (HDS) water treatment plant (WTP) will be sequenced to maintain functionality of the HDS WTP through 2016 or longer, if necessary to accommodate the overall site needs and project schedule. The building, structures, and utilities will be removed by a qualified demolition subcontractor, except for the overhead 69-kilovolt (kV) power line, associated poles, and substation, which NorthWestern Energy (NWE) will remove as part of relocating this utility to a new alignment along the perimeter access road of the ET Cover East.

1.5 Work Plan Summary


The Montana Environmental Trust Group, LLC, Trustee of the Montana Environmental Custodial Trust (Custodial Trust), is submitting this IM Work Plan 2015/2016 in compliance with Paragraph 14 of the First Modification to the 1998 Resource Conservation and Recovery Act (RCRA) Consent Decree (First Modification; Dreher et al., 2012).

This IM Work Plan 2015/2016 builds on information presented in the previous IM Work Plans, and additional reports and technical memorandums prepared by the Custodial Trust. General background information on site history and conditions is presented in the *Phase II RCRA Facility Investigation—East Helena Facility* (Phase II RFI; GSI Water Solutions, Inc., 2014). An updated understanding of groundwater flow and water quality, integrating data collected and evaluations performed since the Phase II RFI, is summarized in Section 3 and will be presented by Hydrometrics in the 2014 Groundwater Conditions Status Report. A complete list of references is provided in Section 9 of this IM Work Plan 2015/2016.

The IM Work Plan 2015/2016 is organized into the following sections:


- Section 1: Introduction.
- Section 2: Overview of Proposed 2015 and 2016 Interim Measures Implementation provides a summary-level description of the IMs proposed for implementation in 2015 and 2016 and how they fit into the overall IM concept for the Facility.
- Section 3: Updated Conceptual Site Model presents data and results of evaluations conducted that augment the existing conceptual site model (CSM) and may impact the proposed work.
- Section 4: Data Sufficiency summarizes the existing data used in the development of the work proposed for 2015 and 2016.
- Section 5: Engineering Design and Construction Information for Proposed 2015 and 2016 Projects provides conceptual design information and outlines construction and implementation requirements to complete the IMs and associated demolition activities proposed for 2015 and 2016. Additional design details are provided in Appendix A.
- Section 6: Remediation Waste Management describes how hazardous and nonhazardous remediation waste will be managed during implementation of the IMs and demolition activities described herein.
- Section 7: Status of Permitting Activities and Approvals provides an update on relevant activities associated with permitting and licensing requirements necessary to complete the 2015 and 2016 activities.
- Section 8: Project Management and Schedule provides an overview of project management activities and the proposed schedule for IM implementation. Updates to the organizational structure, lines of communication, public participation, documentation and reporting, and the schedule are described in this section.
- Section 9: References contains a bibliography of documents cited in text.

Supporting information is provided in three appendixes. **Appendix A** contains design details and supporting documentation. **Appendix B** contains a technical memorandum describing the results of the ET Cover System design evaluation. **Appendix C** contains public comments received on the IM Work Plan 2015/2016, with USEPA responses and a conditional letter of approval.

Note: Phase 3 Demolition activities proposed in 2015 are shown in Figure 1-3.

FIGURE 1-1 Interim Measures Components Proposed for Implementation in 2015 Interim Measures Work Plan–2015/2016 East Helena, Montana

Note: Phase 3 Demolition activities proposed in 2016 are shown in Figure 1-3

FIGURE 1-2 Interim Measures Components Proposed for Implementation in 2016 Interim Measures Work Plan-2015/2016 East Helena, Montana

LEGEND ICS Interim Cover System ET Cover Evapotranspiration Cover HDS WTP High-density Sludge Water Treatment Plant Interim Measure Demolished Structure

Building Proposed for Demolition in 2015

Building Proposed for Demolition in 2016

Prickly Pear Creek Realignment Proposed for 2015/2016

2015 DEMOLITION

No.	General Description
9	LMPT Building
10	Dispensary/First Aid
	Building
11	Change House
12	Thornock Tank &
	Collection Piping
13	Pump House &
	Diesel Fuel Tank
35	MPC Transformers/
	NWE Substation

2016 DEMOLITION

General Description No.

- Warehouse Annex 4
- 39 Powerhouse Transformer Room
- Electric Shop 40
- 42 Pump House
- 49
- Sampling & Monitoring Building
- Meter House 53 Acid Plant Drain Water 54
- Sump Pump 65 Water Vault & Sump
- 73 Neutralization Building
- 74 MCC Building
- HDS Water Treatment 75 Building

General Description No.

- 76 Sludge Recovery Building
- 77 Lime Silo
- HERO Building & 78 Associated Tank
- 79 Equipment Washing Building
- 80 Soda Ash Silo
- HDS Storage Tanks 83
- ACM & LBP 75
- Rodeo Tank (near METG 81 Office)

FIGURE 1-3

Phase 3 Demolition Activities Interim Measures Work Plan-2015/2016 East Helena, Montana

Overview of Proposed 2015 and 2016 Interim Measures Implementation

This section provides an overview of the next phases of IM activities proposed for implementation in 2015 and 2016. Engineering details for the work summarized in this section are provided in Section 5.

2.1 South Plant Hydraulic Control Interim Measure: Prickly Pear Creek Realignment

The next phase of the SPHC IM proposed for construction in 2015 and 2016 is the PPC Realignment. The PPC Temporary Bypass will remain in service to allow for concurrent operation and protection of the completed PPC Realignment. This section describes proposed activities.

Activities proposed in 2015 and 2016 are the excavation and construction of portions of the PPC Realignment as shown in **Figure 1-1**, completion of the PPC Realignment as shown in **Figure 1-2**, and establishment of wetlands, including vegetation of the PPC Realignment channel bank and floodplain, to replace those affected by IM activities.

2.1.1 PPC Realignment

Objectives. The objectives of the PPC Realignment are as follows:

- Further reduce groundwater levels beneath the southern portion of the former Smelter site by 1 to 2 feet in the South Plant area and an additional foot beneath the former Acid Plant area.
- Eliminate further undercutting of the eastern edge of the slag pile by moving the PPC channel 100 to 300 feet to the east of the toe of the slag pile.

Description. Activities proposed in 2015 as part of the PPC Realignment include excavation and backfill in the southern segment of the project area, west of the present stream channel (**Figure 2-1**). Material excavated from the southern segment of the project area will be placed on the main plant site as a portion of the ICS 2. Material will also be excavated from the East Bench east of the slag pile in the northern segment, below Smelter Dam (**Figure 2-1**). This excavated material will be used as streambed and floodplain substrate to replace the sandy material accumulated in the southern segment through the former Upper Lake Complex. Channel and floodplain features will be excavated and constructed generally as shown on the drawings provided in Appendix A. The stream will remain in the PPC Temporary Bypass channel around the southern segment and in the existing channel through the northern segment to isolate the existing channel from excavation activities.

In 2016, excavation and channel and floodplain construction will be completed in both the northern and southern segments, including regrading of the former TPA and Lower Lake area (Figure 2-2). When ready, the stream north of Smelter Dam will be rerouted into the new PPC channel, allowing for excavation and backfilling adjacent to the slag pile (Figure 2-2). The temporary bridge previously installed across Smelter Dam will be reset to allow for transport of excavated materials across the new PPC channel to be used in construction of the ET Cover System. An inlet structure to regulate flows into the southern end of the new PPC channel will be constructed near the present PPC Temporary Bypass channel inlet. Once all segments of the PPC channel are ready to receive water, flows will be diverted into the new channel through the southern segment and the remaining edges of the floodplain will be completed.

2.1.2 Wetlands Establishment

Objectives. The wetlands proposed as part of the PPC Realignment are designed to provide habitat restoration or replacement to at least a 1:1 ratio (impacted to mitigated) to comply with natural resource protection permitting requirements for remediation work. The wetlands are designed to provide mitigation for wetlands disturbed by the IMs being implemented. Under the monitoring and maintenance plan included in the Joint Application No. 2 (see Section 7.2.1), routine inspections will occur for at least 10 years to ensure compliance with the 1:1 ratio requirement.

Description. More than 42 acres of jurisdictional wetlands impacted by the PPC Realignment will be replaced with approximately 48 acres of similar habitat (constructed wetlands). Approximately 18 of the constructed acres will be classified as submergent/emergent habitat type and approximately 24 acres will be classified as scrub-shrub (sapling/shrub stratum). **Figure 2-3** shows the designed replacement wetlands.

Technical Evaluation. The PPC Realignment design basis documents provide a comprehensive summary of the calculations, memorandums, and reports used to develop the design and specifications of the PPC Realignment and wetlands establishment (Pioneer Technical Services, 2014). Evaluations have included stream assessments, design criteria calculations, analyses of sediment transport, construction sequencing, bypass usage, slag pile options, wetland delineations, wildlife documentation, sediment transport analyses, and plant salvage options. A list of the available documents used in the design basis is provided in Appendix A; electronic copies of the documents are available on request.

2.2 ET Cover System Interim Measure: Interim Cover System 2 and ET Cover East and West Construction

The next phase of the ET Cover System IM proposed for construction in 2015 and 2016 includes demolition of remaining structures and construction of the remaining components of the ET Cover System. Modification of the monitoring well network is proposed to decommission or protect existing wells located within the ET Cover System footprint.

2.2.1 Proposed Activities

Activities proposed in 2015 and 2016 are Phase 3 demolition, construction of the ICS 2, and construction of the ET Cover West and East over the foundation layers provided by the ICSs 1 and 2.

2.2.1.1 Phase 3 Demolition

The buildings, structures, utilities, and other features proposed for demolition are shown in **Figure 1-3** and summarized in Section 5.2.2. Activities for 2015 are proposed to remove remaining infrastructure (building, structures, debris, and utilities) within the ICS 2 while providing continuous functionality and vehicle access to the onsite HDS WTP (through 2016, or longer if needed), groundwater monitoring, and asset recovery operations at the slag pile. The building, structures, and utilities in the footprint will be removed by a qualified demolition subcontractor except for the overhead 69-kV power line, associated poles, and substation, which NWE will remove and relocate to a new alignment in coordination with ICS 2. In 2016, all remaining infrastructure within the ET Cover East footprint will be demolished. As proposed in 2015, functionality and vehicle access for groundwater monitoring and asset recovery operations at the slag pile will be maintained during construction and after 2016 construction is complete.

Objectives. The objective of this work is to remove utilities and infrastructure that interfere with the location of the ICS 2 and ET Cover East on the former Smelter site. The work will be sequenced and controlled to remove the features in support of the ICS 2 and ET Cover East construction activities and allow continued operation of the HDS WTP through 2016, or longer if needed, while preventing stormwater and associated sediment from running offsite.

Description. Demolition of currently remaining facilities, buildings, structures, and utilities located within the ET Cover East footprint will be performed in phases to support construction of the ICS 2 and ET Cover East. Under the current schedule, the HDS WTP will remain operational until mid-2016, when its removal

will be necessary to complete the ET Cover East. Demolition debris such as broken concrete, pavements, and brick, will be placed in the ICS 2. Suitable materials will be sent to recycling facilities. Remaining demolition debris will be disposed of offsite at appropriate facilities, depending on the nature of the waste.

Technical Evaluations. Technical requirements for demolition include sequencing activities, categorizing waste as recycled (requiring offsite disposal) or appropriate for disposal under the ET Cover System IM, establishing management, transportation, and disposal protocols for each waste type, managing stormwater, and establishing abandonment guidelines for underground utilities.

NWE is coordinating with the Custodial Trust to decommission and demolish the substation and to relocate the 69-kV transmission line. These engineering evaluations for substation demolition and 69-kV transmission line relocation will address removal, cleanup, and line relocation. The relocated 69-kV line will follow the permanent perimeter road, which runs along the eastern border of ICS 2/ET Cover East. Construction of the ICS 2 will be coordinated with this relocation construction process.

2.2.1.2 ICS 2 Construction

The ICS 2 will consolidate and protectively manage materials excavated in 2015 from the PPC Realignment. These excavated materials will function as engineered fill within the ET Cover East footprint, and will be protected by a cap consisting of a temporary low-permeability soil cover and the biobarrier layer of the ET Cover East. **Figure 2-4** provides a cross-sectional view of the ICS 2. To allow continued access for construction personnel and ongoing activities, design of the ICS 2 includes an access road around the proposed footprint of the ET Cover East.

Objectives. The primary purpose of the ICS 2 is to protectively manage materials excavated during the PPC Realignment until the ET Cover East can be constructed. Objectives of the ICS 2 design are as follows:

- Allow the materials excavated by the PPC Realignment construction to be excavated and immediately consolidated within the Area of Contamination (AOC), minimizing the environmental considerations and costs of stockpiling and "double handling."
- Establish grades to drain noncontact stormwater runoff to a new temporary infiltration basin on the former TPA.
- Provide a native soil cap on the fill to prevent stormwater from contacting contaminated soil. This action will eliminate the need to collect and treat stormwater from this portion of the site.
- Sequence access road construction to allow continued asset recovery from the slag pile and construction by NWE of a new, overhead, 69-kV transmission line along the road.
- Sequence construction to leave open the central corridor between the ICS 1 and the ICS 2, for potential use in implementing future Tier II source control measure/groundwater remedy actions, if any.
- Limit the extent of the ICS 2 to allow continued operation of the HDS WTP through 2016, or longer if needed.
- Accept the excess volume of soil that is expected to be generated by the PPC Realignment in 2015.

Description. As with the ICS 1, the ICS 2 will form the foundation layer, or subgrade, of the ET Cover East. The ICS 2 will cover the soil and sediment removed during the PPC Realignment and consolidated within the AOC, protectively managing them during the interim period between excavation and construction of the final layers of the ET Cover East. ICS 2 will allow "noncontact" stormwater runoff to be shed to offsite drainage structures. The proposed areal extent of ICS 2 is shown in **Figure 1-1**.

Technical Evaluations. Technical evaluations have been completed for the ET Cover System IM to evaluate whether the cover system meets remedy performance standards, and to provide background information needed in the ICS 2 design. In addition, information obtained from the following activities performed during the ICS 1 construction will be incorporated into the ICS 2 design:

- Developed the required volumetric fill capacity for the ICS 2 and the ET Cover System by analyzing the cut and fill balance. This included performing laboratory tests to assess the shrink and swell characteristics of borrow soil.
- Performed three-dimensional topographic modeling to develop the ICS 2 grading plans that provide the required volumetric fill capacity and slopes that meet requirements for stormwater management, slope stability, and erosion control.
- Performed slope stability analyses of the ICS 2 slopes to verify that finish grades have acceptable factors of safety against slope instability.
- Performed hydraulic analyses to size stormwater management structures for the ICS 2. Also performed erosion analyses to develop maximum and minimum slopes and armoring requirements.
- Evaluated existing infrastructure to select sequencing and extent of the ICS 2, as well as the need for temporary infrastructure to support Facility operations during construction.
- Evaluated implementation of quality control requirements from the ICS 1 construction to refine the ICS 2 quality control requirements.
- Conducted the ICS cover soil borrow source evaluations to define the physical and chemical properties of the soil sources.
- Completed drainage option analyses to identify the design elements needed for runoff management; the objective was to accommodate design flows from the ET Cover System while minimizing runoff contribution from the former Smelter site to adjacent Custodial Trust properties.
- Evaluated the moisture balance effects and potential impacts to groundwater of the ICS 2 during its interim functional time period.

2.2.1.3 ET Cover East and West Construction

In 2015, the ET Cover West will be placed over the foundation provided by the ICS 1. In 2016, the ET Cover East will be placed over the ICS 2 and central corridor. **Figure 2-4** provides a cross-sectional view of the ET Cover System, with details of the ICSs and the final ET Cover layers.

Objectives. Both the ET Cover East and West will be constructed to meet the same major objectives. In addition, the ET Cover East will include grading within the central corridor to accept the excess volume of soil that is expected to be generated by the PPC Realignment in 2016. The major objectives of the ET Cover East and West are as follows:

- Reduce the infiltration of precipitation and associated leaching of inorganic contaminants in surface soil to groundwater, which will further reduce the volume of contaminant mass being mobilized to groundwater and transported offsite.
- Replace the existing interim cover system.
- Reduce the volume of contaminated stormwater that is being collected and treated by the HDS WTP.
- Eliminate the potential for people and wildlife to have direct contact with contaminated surface soil.

Description. The ET Cover West will be placed over the existing biobarrier (the existing surface layer of the ICS 1), and consists of an amended storage/topsoil layer, storage layer, and capillary break layer. The ET Cover East will be completed over the ICS 2 and the central corridor by incorporating an amended storage layer/topsoil, storage layer, capillary break layer, and biobarrier layer over the central corridor fill and final layer planned over the ICS 2.

Technical Evaluations. Technical evaluations completed to design the ET Cover East and West are summarized as follows:

- Water balance modeling was conducted in 2012 and 2013 to establish the feasibility of the ET Cover System.
- Evaluated different cover options to conclude that the ET Cover System was the most cost-effective option for meeting performance objectives.
- Conducted a borrow-material investigation to locate and assess the physical and hydraulic properties of potential borrow soil. A second and more extensive borrow investigation was conducted in 2014 as part of the ET Cover System design.
- Evaluated borrow soil gradations, local animals, and similar ET cover systems to develop requirements for a biobarrier layer to inhibit bioturbation of burrowing animals.
- Performed hydraulic modeling in 2013 and 2014 to establish soil types and layer thicknesses used for design. In addition, used modeling to develop a conceptual plant community and alternative ET Cover cross-sections and layering systems.
- Conducted both water balance and hydraulic modeling to finalize the ET Cover section (soil types, soil characteristics, and layer thicknesses).
- Conducted Upper Lake Marsh (ULM) top soil sampling to assess the chemical characteristics of soil that would be used for the surface layer of the ET Cover System. This included performing laboratory and bench-scale tests to develop agronomic properties of surface soil layer required to establish a plant community.
- Calculated the volumetric fill capacity for the ET Cover System by analyzing the cut and fill balance. This included performing laboratory tests to assess the shrink and swell characteristics of borrow soil.
- Performed three-dimensional topographic modeling to develop ET Cover System grading plans that provide the required volumetric fill capacity and assure that slopes meet requirements for stormwater management, slope stability, and erosion control.
- Performed slope stability analyses of the ET Cover System slopes to verify that finish grades have acceptable factors of safety against slope instability.
- Performed hydraulic analyses to size stormwater management structures for the ET Cover System. Also performed erosion analyses to develop maximum and minimum slopes and armoring requirements.
- Evaluated similar ET cover system projects and USEPA guidance documents to develop detailed criteria for the design, construction, and operations and maintenance of the ET Cover System in 2014. In addition, the ET Cover East will incorporate technical specifications developed during the ET Cover West construction.

2.2.2 Monitoring Network Modification

Similar to work completed in 2014 for the ICS 1, the objective of this monitoring network modification is to decommission or protect existing wells that are located within the ET Cover East footprint. Wells that are necessary for future monitoring will be extended to be functional; wells that are not needed for future monitoring will be decommissioned. Experience gained from more than 30 years of monitoring and evaluation at the former Smelter site indicates that a number of wells have not been sampled in years or are no longer needed to provide an effective monitoring network. To evaluate wells for decommissioning or protection, historical and current groundwater monitoring data were reviewed with a focus on remedy performance standards (presented in the draft *Former ASARCO East Helena Facility Corrective Measures Study Work Plan 2013* (CH2M HILL, 2014b). The overall plan and strategy for monitoring the performance of the IMs and their effect on groundwater quality contamination will be developed as part of the final remedy selection.

One well located within the footprint of the Change House (Building 11) has been identified for abandonment. The well will be abandoned in accordance with Administrative Rule of Montana (ARM) 36.21.810.

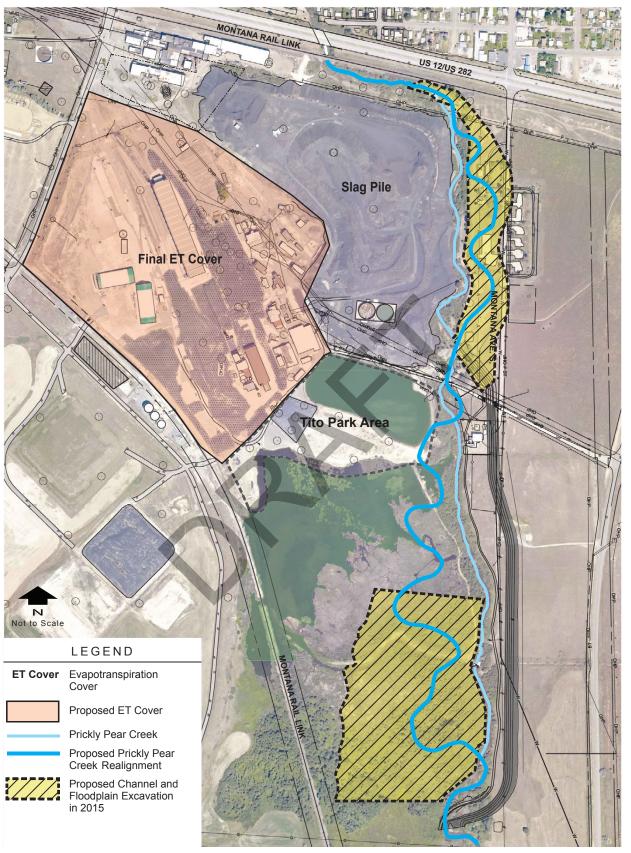
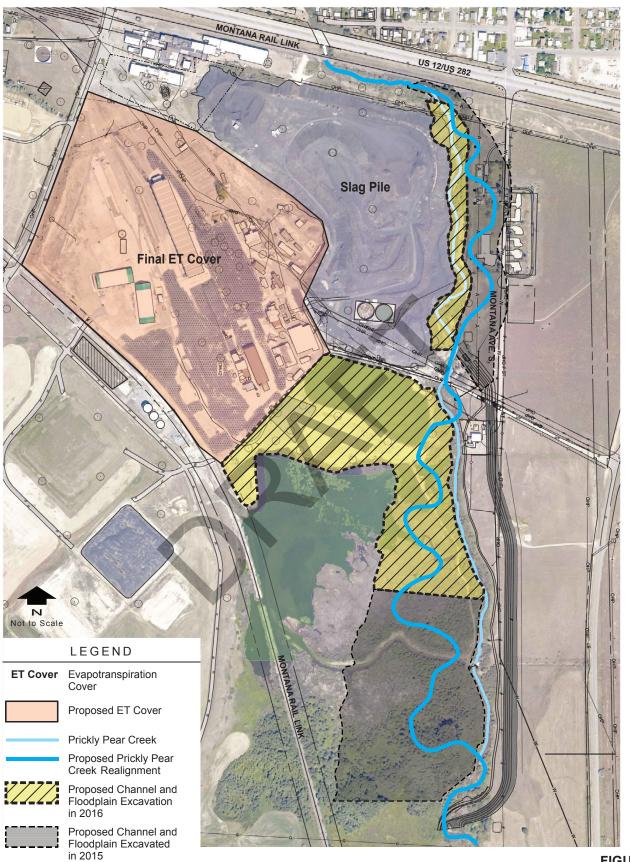
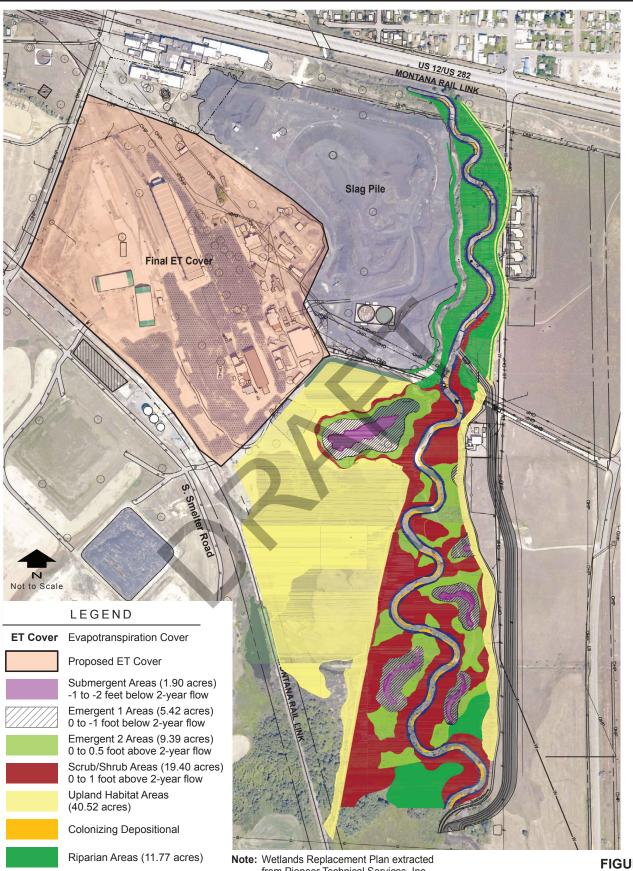
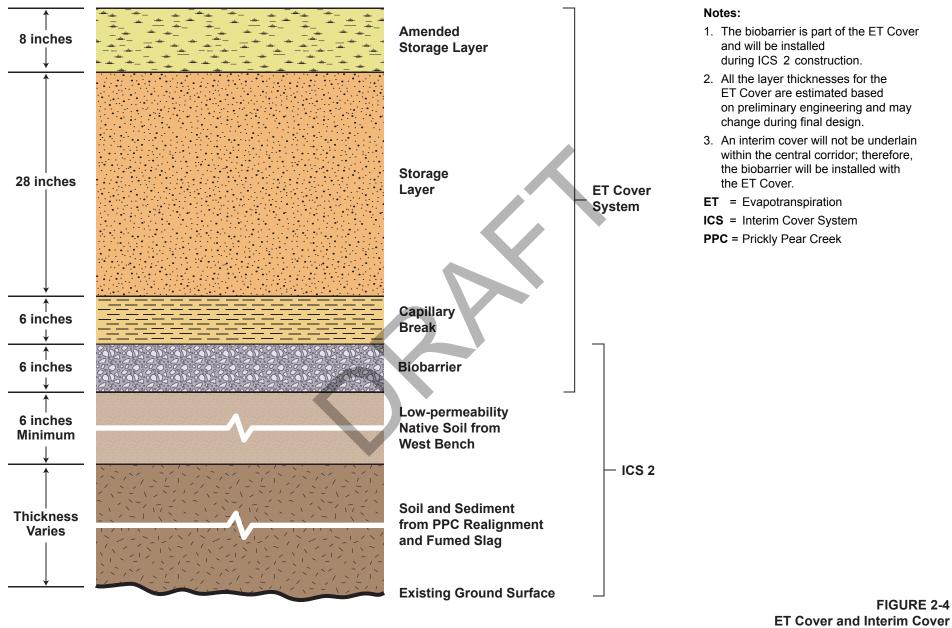


FIGURE 2-1 Channel and Floodplain Areas of Excavation Proposed in 2015 Interim Measures Work Plan–2015/2016 East Helena, Montana


FIGURE 2-2 Channel and Floodplain Areas of Excavation Proposed in 2016 Interim Measures Work Plan–2015/2016 East Helena, Montana

Iote: Wetlands Replacement Plan extracted from Pioneer Technical Services, Inc. 90% Design Drawings, Sheet 9-1, dated 10/1/14.

FIGURE 2-3 Prickly Pear Creek Wetlands Replacement Plan Interim Measures Work Plan–2015/2016 East Helena, Montana

Riparian Buffer (5.01 acres)

ET Cover and Interim Cover System 2 Cross-Section Interim Measures Work Plan–2015/2016 East Helena, Montana

SECTION 3 Updated Conceptual Site Model

This section provides updates to those portions of former Smelter site CSMs presented in earlier documents (e.g., the IM Work Plan 2012, IM Work Plan 2013, IM Work Plan 2014, and Phase II RFI) that are relevant to the work proposed in 2015 and 2016. This section is not intended to repeat earlier published materials but draws on those materials to provide the reader the appropriate context.

3.1 Groundwater Levels

Groundwater levels are an important component of the IM implementation at the former Smelter site for two reasons. First, groundwater elevations are a key consideration in planning and design of the PPC Realignment. Vertical alignment of the new PPC channel with the local groundwater table is critical for construction and proper long-term functioning of the realigned creek. Second, groundwater levels at the former Smelter site determine, in part, the interaction of groundwater with contaminated soil, and subsequent contaminant leaching to groundwater. The following three IM phases implemented to date have lowered groundwater elevations:

- Initiation of Upper Lake dewatering and elimination of Wilson Ditch flow as of November 1, 2011
- Diversion of the PPC through the PPC Temporary Bypass channel on October 29, 2013, effectively lowering the creek stage by up to 12 feet
- Active dewatering of Lower Lake beginning in May 2014 as part of the TPA removal action

Following is a discussion of current groundwater conditions in the ULM and main plant site areas where 2015 and 2016 IM phases are proposed.

3.1.1 Upper Lake Marsh Area Groundwater Levels

Before fall 2011, the ULM area was largely flooded year-round because of the diversion of PPC to Upper Lake. In November 2011, the Custodial Trust commenced the initial phase of the SPHC IM by dewatering Upper Lake and the associated marsh, eliminating the diversion of PPC to Upper Lake, and initiating active pumping (Hydrometrics, 2012). Surface water level monitoring in the ULM area conducted in advance of Upper Lake dewatering consisted of monitoring the lake level itself. Once Upper Lake was sufficiently drained, a number of piezometers were installed to allow for monitoring of groundwater levels as well. **Figure 3-1** shows the ULM area groundwater-level monitoring network.

Figure 3-2 shows groundwater and surface water level trends in the ULM area since August 2011, about 3 months before the start of Upper Lake dewatering. As shown in the figure, the surface water level in Upper Lake fell about 2.5 feet immediately after Upper Lake dewatering was initiated (November 1, 2011), causing groundwater levels to subsequently decline across the main plant site (Section 3.1.2). The lake level declined a total of 4.1 feet between October 2011 and October 2013.

On October 29, 2013, PPC was diverted through the PPC Temporary Bypass channel. As a result of this diversion, groundwater levels in the ULM area declined further. From October 22, 2013, to December 2, 2013, before seasonal effects on groundwater levels would be noted, declines in groundwater levels ranged from 0.5 to 2.5 feet and averaged 1.4 feet. As expected, declines were greatest in the northeastern portion of the ULM near PPC and least in the southwestern portion, farthest from PPC.

Although a partial rebound in groundwater levels in May 2014 because of spring runoff (**Figure 3-2**), active dewatering of Lower Lake conducted as part of the TPA removal action resulted in further groundwater-level declines. Groundwater levels in the ULM area declined from 0.7 to 2.2 feet between May 1, 2014, and October 22, 2014, with an average decline of 1.5 feet.

Overall, groundwater-level declines in the ULM area range from 0.07 foot at PPCRPZ-7 to 8.58 feet at PPCRPZ-1 (**Figure 3-1**), and average 4.0 feet between October 2011 and October 2014 (**Table 3-1**). Further declines on the order of 1 to 2 feet in the north ULM area (north of the former Upper Lake inlet channel) are anticipated following completion of the PPC Realignment. The realigned PPC is expected to have minimal effect on groundwater levels south of the inlet channel.

TABLE 3-1

Upper Lake Marsh Area Groundwater-Level Response to Completed Interim Measures Interim Measures Work Plan 2015/2016

Site	Upper Lake Dewatering 10/31/11-10/22/13	Prickly Pear Creek Diversion 10/22/13-12/13/13	Lower Lake/TPA Dewatering 5/1/14-10/14/14	Total Water Level Decline 10/31/11 – 10/14/14
PPCRPZ-1	4.46	2.52	1.41	8.58
PPCRPZ-2	3.98	1.79	1.60	7.53
PPCRPZ-3	4.00	1.37	1.17	6.58
PPCRPZ-4	3.52	1.02	1.42	5.67
PPCRPZ-5	0.46	0.84	2.19	2.51
PPCRPZ-6	-1.40	0.64	1.97	0.49
PPCRPZ-7	-2.32	1.30	1.66	0.07
ULMPZ-1	4.14	-0.08	4.87	10.71
ULMPZ-2	1.16	-0.07	0.73	1.82

Notes:

TPA = Tito Park Area

Total water level declines based on Upper Lake stage of 3,920.46 feet on October 20, 2011.

Monitoring locations are shown in Figure 3-1.

Negative values indicate water level rise.

3.1.2 Main Plant Site Groundwater Levels

Similar to the ULM, groundwater levels at the main plant site have been influenced by the SPHC IM and TPA removal action. **Figure 3-3** shows groundwater-level trends for select monitoring wells across the southern and western portions of the main plant site where the PPC Realignment and ET Cover System are planned. As described above for the ULM area, water levels in these areas have been closely monitored since initiation of Upper Lake dewatering in November 2011, with monitoring continuing to date. Well locations are shown in **Figure 3-1**.

As shown in **Figure 3-3**, groundwater levels throughout most of the South Plant area responded to the November 2011 dewatering of Upper Lake. Lower Lake and well DH-20 both showed an immediate decline in water levels in response to the Upper Lake dewatering, while well APSD-8, located adjacent to and influenced more by PPC, showed a delayed response. Overall, water level declines in the South Plant area resulting from dewatering of Upper Lake and before the diversion of PPC through the PPC Bypass channel averaged about 2 feet (**Table 3-2**). Water level declines during this same period averaged about 2.6 feet in the former Acid Plant area and 5 feet further downgradient in the northwestern portion of the main plant site. The larger water level declines in the northwestern portion of the main plant site are attributable primarily to the elimination of flow in nearby Wilson Ditch.

TABLE 3-2

South and West Plant Site Groundwater-Level Response to Completed Interim Measures
Interim Measures Work Plan 2015/2016

Site	Upper Lake Dewatering 10/31/11-10/22/13	Prickly Pear Creek Diversion 10/22/13-12/13/13	Lower Lake/TPA Dewatering 5/1/14-10/14/14	Total Water Level Decline 10/31/11 – 10/14/14
South Plant Area				
Lower Lake	2.56	1.64	3.71	9.18
APSD-8	2.73	0.88	2.173	6.08
DH-20	0.52	3.55	0.53	5.74
Average	1.94	2.02	2.14	7.00
Former Acid Plant Area				
DH-19R	2.40	0.91	1.13	4.97
DH-42	2.54	0.92	0.92	5.13
DH-71	2.92	0.92	0.836	5.53
Average	2.62	0.92	0.96	5.21
Northwest Plant Site				
DH-17	4.91	1.21	-0.9	5.55
DH-66	5.36	1.24	-0.96	5.95
DH-51	4.78	1.25	-0.91	5.24
DH-49	5.32	1.28	-1.03	5.63
Average	5.09	1.24	-0.95	5.59

Notes:

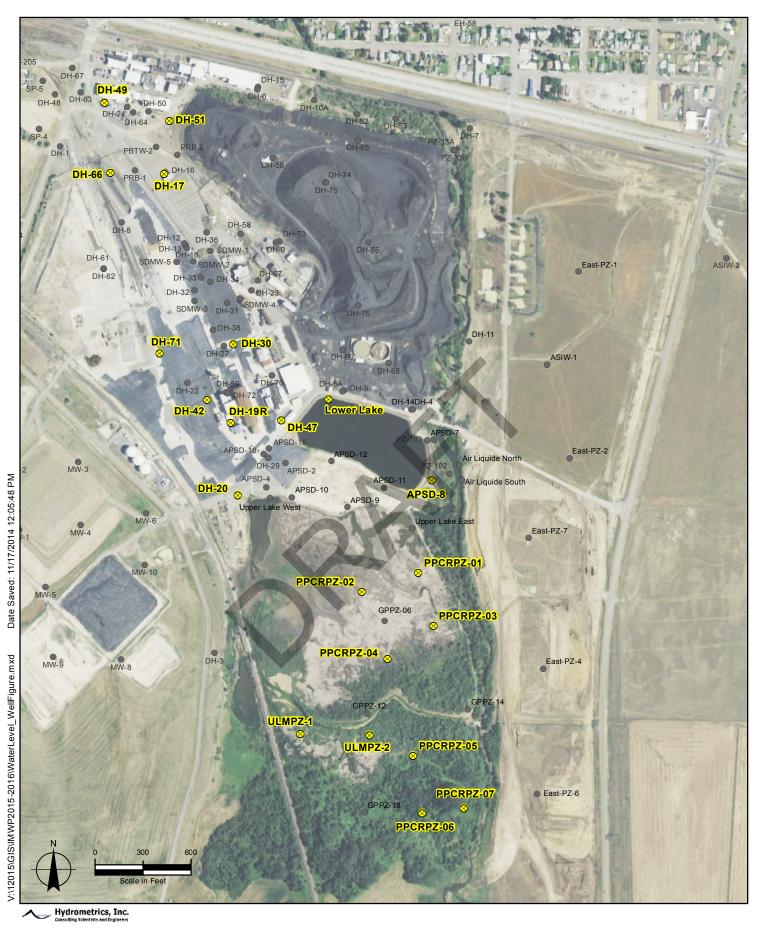
TPA = Tito Park Area

Total water level declines based on Upper Lake stage of 3,920.46 feet on October 20, 2011.

Monitoring locations are shown in Figure 3-1.

In response to the October 29, 2013, diversion of PPC to the PPC Temporary Bypass channel, groundwater levels declined further throughout the southern and western portions of the main plant site. South Plant area groundwater levels declined about 2 feet on average, former Acid Plant area levels declined about 0.9 foot and levels in the northwestern portion of the main plant site declined about 1.2 feet between October 15, 2013, and December 13, 2013. Water level trends in response to the dewatering of Lower Lake for the TPA removal action include 2.1- and 1.0-foot declines in the South Plant area and former Acid Plant areas, respectively, and an approximate 1-foot rise in the northwestern portion of the main plant site suggests that water levels in that area may have reached a post-SPHC IM equilibrium. Overall average water level changes since Upper Lake dewatering began in November 2011 are 7.0 feet in the South Plant area, 5.2 feet in the former Acid Plant area, and 5.6 feet in the northwestern portion of the main plant site, the latter is attributed mainly to the lack of flow in Wilson Ditch (**Table 3-2**). Further groundwater declines of 1 to 2 feet in the South Plant area and up to 1 foot in the former Acid Plant area are anticipated to occur in response to the PPC Realignment; no additional decline is anticipated in the northwestern portion of the main plant site.

3.2 Arsenic and Selenium in Groundwater

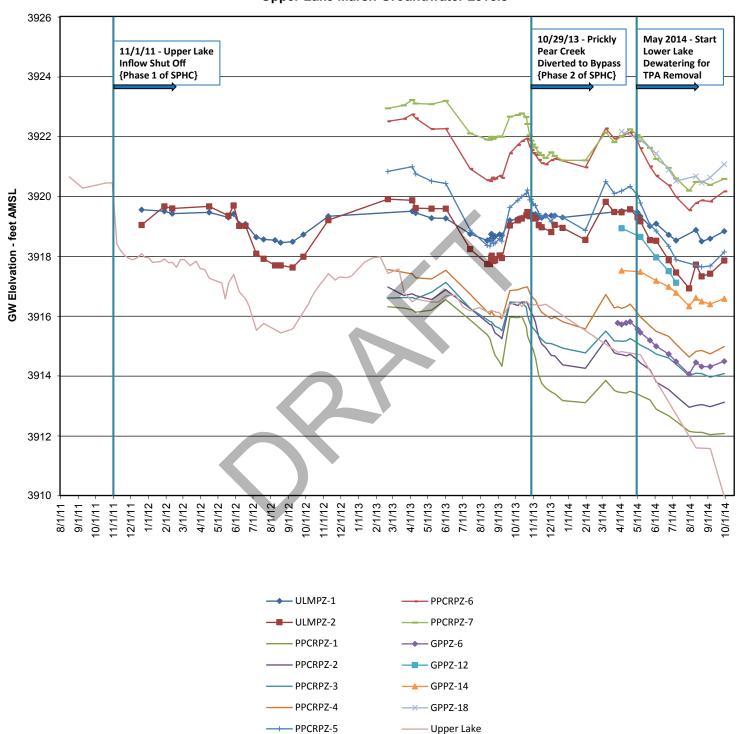

The status of the arsenic and selenium groundwater plumes has been updated using the latest comprehensive groundwater monitoring data from June 2014. Based on numerous investigations, arsenic and selenium have been identified as the primary chemicals of concern in groundwater and their plumes extend farthest beyond the former Smelter site boundary. As such, this discussion summarizes the changes in the arsenic and selenium plumes.

The current understanding of the arsenic groundwater plume is shown in **Figure 3-4**. Although arsenic concentrations in the center of plume have shown varying trends, the overall extent of the plume, as defined by a concentration of 0.010-milligram per liter (mg/L) (corresponds to the USEPA maximum contaminant level [MCL] for arsenic in groundwater), has not changed significantly in nearly 10 years. This indicates a stable plume, with no current evidence of plume advancement. However, remedial actions on the former Smelter site, including slurry wall construction and implementation of IMs, have resulted in contraction of the higher concentration portions of the arsenic plume. In 2002, arsenic concentrations in excess of 10 mg/L were common throughout the former Smelter site, extending from the South Plant area (former Acid Plant area) northward into East Helena. Recently, the greater-than-10 mg/L arsenic plume boundary has contracted in some areas, and now consists of more isolated areas within the former Smelter site, and an area extending into East Helena. In particular, decreases in arsenic are noted at some wells in the former Acid Plant area, which is located immediately downgradient of the TPA removal area and where the SPHC IM has the greatest beneficial effect. At well DH-30, arsenic concentrations have decreased from about 15 mg/L in 2011 (pre-SPHC IM implementation) to about 6 mg/L and well DH-47 shows a slight decrease in arsenic concentration.

The current configuration of the selenium groundwater plume is shown in **Figure 3-5**. Key changes noted in selenium concentrations include reductions in some wells in the south part of the former Smelter site, including the Acid Plant area. Well DH-71 reported pre-SPHC IM concentrations of selenium ranging from about 0.1 to 0.25 mg/L that have decreased to consistent concentrations near 0.05 mg/L (corresponds to the USEPA MCL for selenium in groundwater). Selenium concentrations are also decreasing in well DH-30.

A westward shift observed in both the arsenic and selenium plumes since 2011 is attributable to the SPHC IM. The selenium plume indicates an approximate 20-degree shift to the west. Previously, this plume (and the arsenic plume located just to the east) would shift slightly to the east during the fall, presumably because of leaking of water in Wilson Ditch to groundwater, then back toward the west after flow in the ditch ceased. Groundwater-level changes driven by the SPHC IM, particularly the absence of water in Wilson Ditch and the associated lack of leakage recharging groundwater during the irrigation season, have resulted in the slight shift of the plumes to the west.

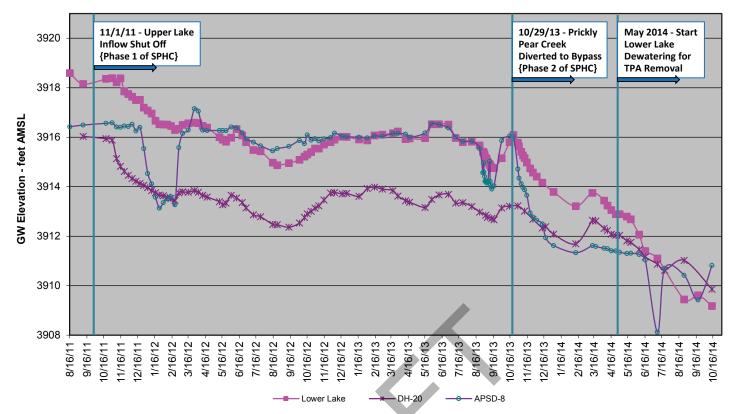
As noted above, the most evident effects of the SPHC IM have been (1) ongoing contraction of higher concentration portions of the plumes in some areas of the former Smelter site, also reflecting the continued effects of previous remedial actions, and (2) a shift in selenium and (to a lesser extent) arsenic plume migration direction to the west. Because the SPHC IM has been implemented in stages over the last several years, it is likely that the groundwater flow and geochemical systems remain in a state of change, and that additional time and monitoring will be necessary to fully evaluate the water quality responses at the former Smelter site and downgradient locations.

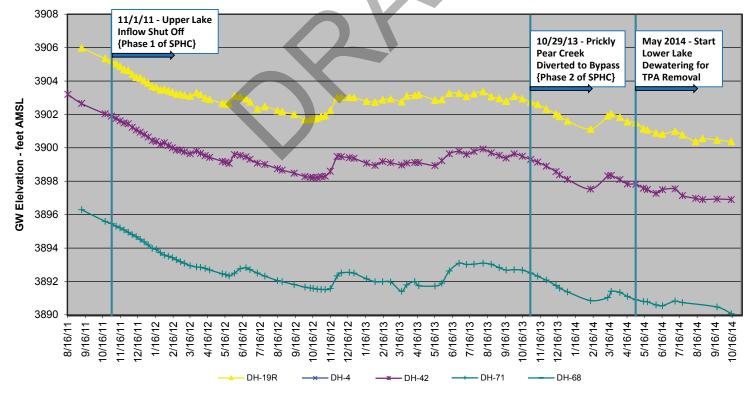

LEGEND

8 Groundwater Level Monitoring Well

Existing Site Well

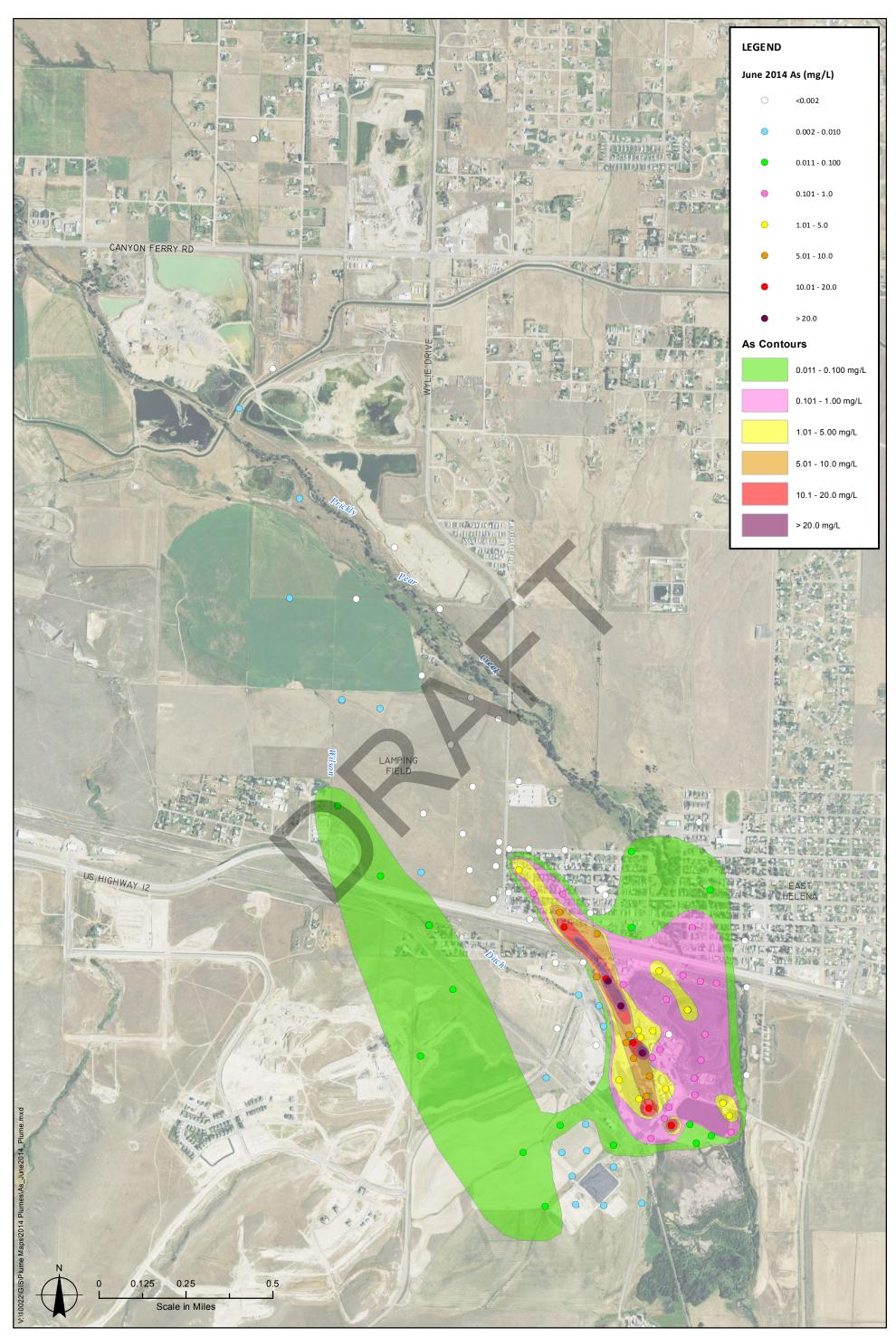
Note: This figure was prepared by Hydrometrics, Inc., 2014.


Figure 3-1 Plant Site Area Monitoring Wells/Piezometers Interim Measures Work Plan–2015/2016 East Helena, Montana


Upper Lake Marsh Groundwater Levels

Acconsulting Scientists and Engineers Note: FIGURE 3-2 Groundwater Elevation Trends in Upper Lake Marsh Interim Measures Work Plan–2015/2016 East Helena, Montana

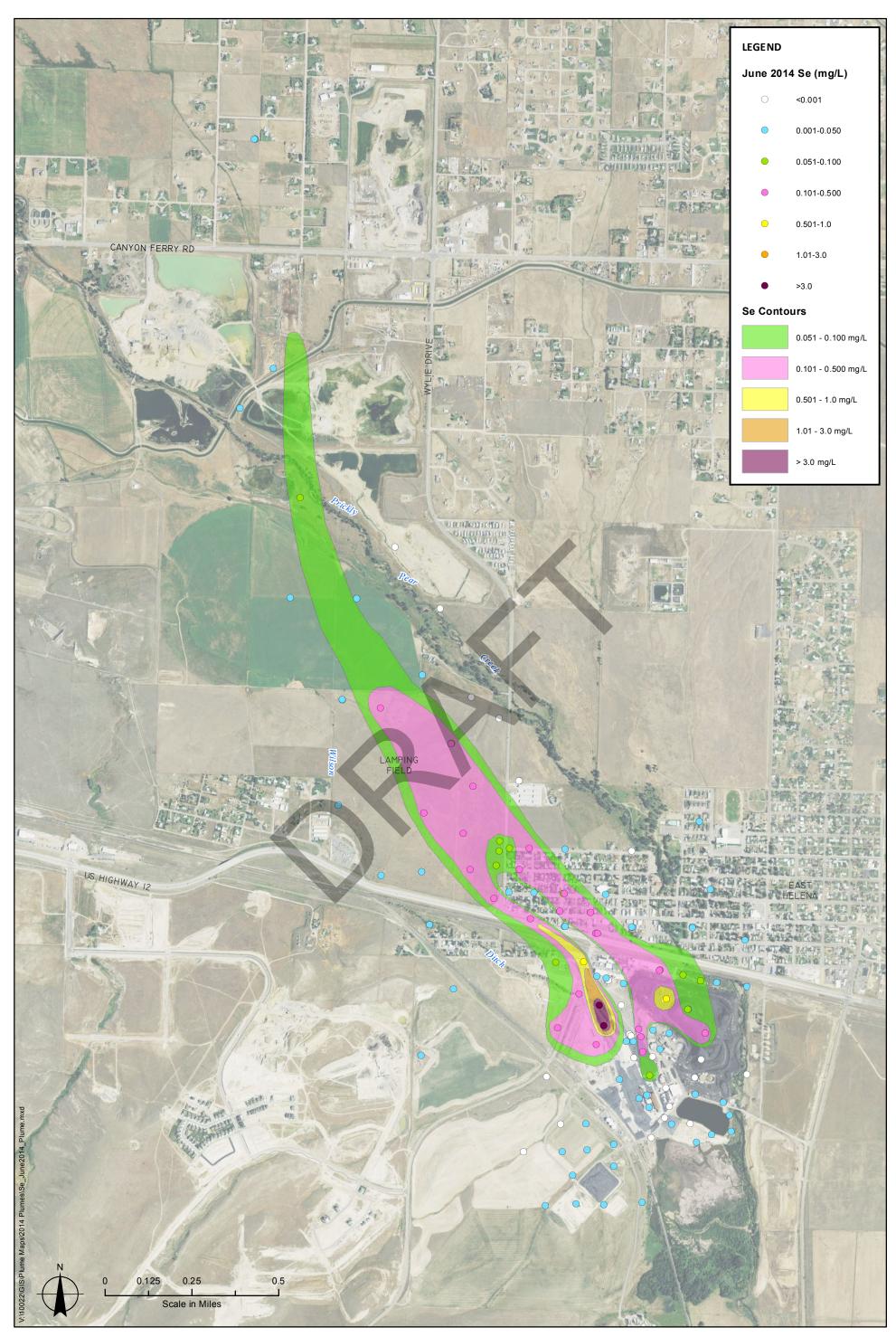
This figure was prepared by Hydrometrics, Inc., 2014.



Acid Plant Area Groundwater Levels

Hydrometrics, Inc.

Note: This figure was prepared by Hydrometrics, Inc., 2014. FIGURE 3-3 Groundwater Elevation Trends in Plant Site Wells Interim Measures Work Plan–2015/2016 East Helena, Montana



Note:

This figure was prepared by Hydrometrics, Inc. as part of the "Former East Helena Smelter Groundwater Status Report" (December, 2014).

FIGURE 3-4 June 2014 Dissolved Arsenic Plume Interim Measures Work Plan–2015/2016 East Helena, Montana

Note:

This figure was prepared by Hydrometrics, Inc. as part of the "Former East Helena Smelter Groundwater Status Report" (December, 2014).

FIGURE 3-5 June 2014 Dissolved Selenium Plume Interim Measures Work Plan–2015/2016

Measures Work Plan–2015/2016 East Helena, Montana

Data Sufficiency

Data developed to date are sufficient to support the conceptual development of the IMs and design of the projects proposed for implementation in 2015 and 2016. Included in this section are a summary of existing data and potential data needs for the proposed work.

4.1 Summary of Existing Data

A variety of data have been used to evaluate, design, and construct the work described in this IM Work Plan 2015/2016. The summary data collected and incorporated into one or more IMs were originally presented in the IM Work Plan 2012 and updated in the subsequent IM Work Plans. Updates relevant to the proposed 2015 and 2016 work incorporate information collected and completed through November 2014. Updates are summarized as follows:

- Hydrogeology—Ongoing. Significant investigations over the last 20 years have contributed to a thorough understanding of groundwater conditions at the former Smelter site and offsite areas. This understanding will continue to be refined based on the results of routine (generally quarterly and semiannual) monitoring by the Custodial Trust, as summarized in the Corrective Action Monitoring Plan (CAMP; Hydrometrics, 2014). Available data collected during 2014 have been incorporated as appropriate into the IM designs, as will results of ongoing groundwater monitoring. Actual field results were used to continue calibrating the coupled groundwater flow and fate and transport (F&T) model. Groundwater sampling will continue on a routine basis pursuant to the CAMP.
- Groundwater Flow Model—Ongoing. The groundwater flow model initially was used to predict the
 performance of the SPHC IM (NewFields, 2013). The flow model simulates changes in hydrologic
 conditions over time to predict the efficacy of the SPHC IM at different operational stages: when the PPC
 Temporary Bypass was completed, when the northern segment of the PPC Realignment is completed,
 and when the PPC Realignment is completed in its entirety. Actual groundwater elevation data collected
 after the PPC Temporary Bypass was completed were used to update the predicted performance of the
 SPHC IM (NewFields, 2014). To further refine the flow model, additional groundwater elevation data will
 be collected when the northern segment of the PPC Realignment is completed and the PPC Realignment
 is completed in its entirety.
- Groundwater F&T Model—Ongoing. The groundwater F&T model will be used to predict the
 performance of the IMs in terms of their effects on the arsenic and selenium plumes. The F&T model
 will simulate the current extent of the arsenic and selenium plumes. To support project planning, design,
 and management, the calibrated model will evaluate predicted effects of planned IMs on groundwater
 chemistry.
- Stream flow—Completed. Flow calculations were summarized in the *PPC Realignment Design Basis Documentation* and in the Conditional Letter of Map Revision (CLOMR) permit applications submitted to the Federal Emergency Management Agency (FEMA) for the PPC Temporary Bypass and PPC Realignment floodplain permits. The data are published in the *PPC Realignment Channel Stability Analysis and Engineering Design Report* (Pioneer Technical Services, 2013).
- Soil chemistry—Ongoing. Data are summarized in the Phase II RFI.
 - Additional test pits were excavated in the former Lower Ore Storage Area in the fall of 2012. Soil chemistry data from the test pits were compiled and input into the project environmental database.
 - Soil chemistry data available as of April 2014 were compiled into a soil contaminant distribution model constructed using Mining Visualization System software.

- Shallow soil samples from ULM were collected in July 2014. Additional soil samples from the ULM were collected in November 2014 and will be integrated into the designs of the PPC Realignment, the ICS 2, and the ET Cover East and West.
- Soil borings were advanced in September 2014 as part of source area investigations to augment the understanding of subsurface conditions, mostly beneath process areas and suspected source areas of the former Smelter site.
- Soil samples of the TPA removal area (includes Tito Park, UOSA, and Lower Lake) surfaces were collected between September and October 2014. The soil chemistry will be integrated into the designs of the PPC Realignment.
- Groundwater chemistry—Ongoing. The Phase II RFI summarizes work conducted through 2010.
 Groundwater monitoring pursuant to the annual Field Sampling and Analysis Plan (Hydrometrics, 2013b) provided updated information.
- Stormwater flows, chemistry, and discharge data—Ongoing. Data are available from former Smelter site personnel operating the HDS WTP, data collected as required under the Montana Pollutant Discharge Elimination System (MPDES) permit, and stormwater permits.
- Utility types and locations—Completed. Existing utility drawings and underground utility information obtained by the Custodial Trust have been used to identify and locate as many underground utilities as possible.
- Structures—Completed. ASARCO engineering drawings available onsite have been compiled and reviewed as needed for demolition.
- Borrow sources and geotechnical data—Ongoing. Existing data are summarized in the Phase II RFI. Additional test pits were excavated along the East Bench in January 2012 to establish soil types and aggregate sizes to estimate quantities of construction materials. Test pits were also excavated in the Valley View Landfill stockpiles in January 2013 to define soil characteristics for ET Cover System modeling using HYDRUS-1D software (see Appendix B). ULM soil was sampled in July 2014 to assess the appropriate mixing ratio of borrow soil and ULM soil for use as the final cover soil on the ET Cover System, and more specifically, to meet the agronomic properties necessary to establish a plant community on the ET Cover System. Additional ULM samples were collected in November 2014 to further evaluate these criteria and to assess the potential for elevated metals concentrations in PPC Realignment construction dewatering water.
- Environmentally Regulated Material (ERM) Survey—Completed. An ERM Survey was performed during the summer of 2012. All remaining facilities were surveyed. Data from the ERM survey are summarized in the contract documents.

4.2 Additional Data Requirements for 2015 and 2016 Work

Additional data requirements for engineering and construction of the work identified in this IM Work Plan 2015 and 2016 are limited. The following data are being developed and factored in to the final design and implementation of the activities described herein:

• Substation Soil Chemistry Data Collection—Soil samples collected in 2013 by Hydrometrics along the perimeter of the substation indicate presence of low-level polychlorinated biphenyl (PCB) aroclors in the ground surface (Hydrometrics, 2013a). Additional surface and subsurface soil samples will be collected by NWE during the planning and engineering design phase for substation decommissioning. Collection of these soil samples will be timed to coincide with deenergizing the facility. The results will be used to establish the extent of required soil excavation to be completed during substation demolition and the requirements for disposal of this soil. NWE will be responsible for the testing and final disposition of the soil.

Engineering Design and Construction Information for Proposed 2015 and 2016 Projects

This section summarizes engineering design and construction activities planned for 2015 and 2016 associated with the PPC Realignment, Phase 3 demolition activities (including the NWE substation removal and 69-kV transmission line relocation), ICS 2 construction, ET Cover System construction (includes both the ET Cover East and ET Cover West), and cleanup standards for surface soil that will be incorporated into the final designs. A schedule for task implementation is provided in Section 8.

5.1 Prickly Pear Creek Realignment

The PPC Realignment will construct a new PPC channel and floodplain to a more natural elevation in order to lower the groundwater elevations at the former Smelter site. Approximately 800,000 cubic yards (yd³) of contaminated material in and adjacent to PPC and proximal waterbodies will be removed. In addition, the 12-foot-high Smelter Dam will be removed. The significant components of the SPHC IM proposed in 2015 and 2016 to complete the PPC Realignment are as follows:

- Removal of the Upper Lake Diversion (2015)
- Permanent realignment of PPC (2015 and 2016)
- Floodplain and wetland reconstruction (2016)

5.1.1 Key Design Objectives

The key design objective of the PPC Realignment is to lower groundwater elevations in the southern part of the former Smelter site as part of the SPHC IM. Major objectives associated with the PPC Realignment and wetlands construction and restoration are as follows:

- Support implementation of the cleanup management strategy for the site.
- Facilitate stabilization of the slag pile.
- Provide wetland habitat restoration or replacement to comply with natural resource permitting requirements.
- Provide materials for other IM construction actions.
- Facilitate elimination of the HDS WTP discharge to PPC.
- Reconstruct PPC to a more natural functioning waterbody.
- Mitigate wetlands at an impacted to mitigated ratio of 1 to 1.
- Develop stream and wetland functions and values equal to or better than those affected.
- Provide upstream passage for adult native fish species and downstream passage for all salmonid age classes.
- In consultation with the U.S. Fish and Wildlife Service (USFWS), avoid to the extent possible the taking, killing, possession, and transportation (among other actions) of migratory birds, their eggs, parts, and nests, in adherence with the Migratory Bird Treaty Act (MBTA).

5.1.2 Design and Construction Features

The design and construction features documented in Appendix A meet the following design criteria and objectives for the PPC Realignment:

• Modify hydraulic regime to reduce mass and rate of contaminant transport away from the site.

- Realign the PPC to support modification of groundwater flow paths.
- Realign the PPC to prevent entrainment of slag materials into the creek.
- Provide a bankfull hydraulic capacity for a 2-year runoff event, slightly larger than the bankfull discharge.
- Design the channel to transport the estimated incoming sediment load without reach-scale aggradation, degradation, or large-scale instability.
- Create the channel with meandering planform and deformable banks, where geomorphically appropriate, and incorporate pool, riffle, and run sequences.
- Incorporate wetlands into the floodplain where hydrologically feasible and geomorphically stable.
- Incorporate grade controls or nondeformable bank treatments where vertical or horizontal stability is required to protect infrastructure or previously remediated areas.
- Construct deformable banks to be stable with woody vegetation allowing for some undercutting and habitat formation over time.
- Provide upstream fish passage for adult species and downstream passage for all age classes.
- Establish a total canopy that covers 80 percent within streambanks and riparian habitats; 95 percent within submergent and emergent habitat; and 60 percent in upland areas.
- Provide riparian vegetation that consists of native species of different growth forms suitable for hydrologic and climatic regimes at the project area.
- Incorporate multiple habitat types including open water, submergent, two emergent types, riparian, scrub-shrub, and upland habitats.

Construction of the PPC Realignment includes a temporary flow control structure expected to remain in place for 5 to 7 years after floodplain, wetland, and realignment construction is completed. The structure will divert only high flows through the PPC Temporary Bypass channel to maintain less than bankfull flow in the realigned PPC until vegetation along the banks has become sufficiently established to withstand unregulated flows.

5.1.3 Construction and Quality Management

Standard construction quality control and quality assurance (QA/QC) practices will be employed throughout the project to facilitate completion in accordance with the design and project objectives. Typical construction testing, surveying, and inspection and documentation measures will be employed to ensure that the materials and workmanship meet necessary project objectives. The *90% Design Basis Documentation for Stakeholder Review* (Pioneer Technical Services, 2014) provides the specific alignment, grade, and construction tolerances applicable to the PPC Realignment, as well as requirements pertaining to QA/QC activities for the entire project.

Key construction and quality management activities and issues associated with the PPC Realignment are as follows:

- Sequence operations to coordinate with the ICS 2, corridor subgrade, and ET Cover construction and availability of East Bench materials, and allow use of soil from areas north of Smelter Dam as substrate for channel/floodplain construction in the area south of the dam.
- Time seeding and plantings based on groundwater levels and season.
- Manage surface and groundwater to optimize surface water groundwater interaction, develop wetland areas, and enhance planting survival.

- Manage stormwater runoff to meet Stormwater Pollution Prevention Plan (SWPPP) criteria.
- Manage groundwater during construction to meet construction dewatering permit requirements.
- Handle materials for both the PPC Realignment and the ICS 2 to protect human health and the environment.
- Place materials (soil and riprap) to meet design objectives.
- Collect and store plant materials (cuttings and salvaged plants) to facilitate cutting and plant survival, and overall vigor.

5.1.4 Preliminary List of Drawings and Specifications

The complete list of drawings from the 90 percent design of the PPC Realignment and wetlands restoration are provided in Appendix A. Appendix A also includes the list of the technical specifications for the PPC Realignment and wetlands restoration activities.

5.2 Phase 3 Demolition

Phase 3 demolition activities include the demolition of buildings and infrastructure located within the footprint of the ET Cover East, removal of the NWE substation and transmission line relocation, and abandonment of monitoring wells.

5.2.1 Key Design Objectives

The primary purpose of the Phase 3 demolition activities is to provide a clear footprint in which to construct the ICS 2 and ET Cover East. Major objectives of the demolition design include the following:

- Demolish infrastructure in the ICS 2 footprint in early 2015 to provide sufficient time to complete the ICS 2 construction in 2015.
- Protect and preserve infrastructure associated with the HDS WTP to allow continued operation as necessary to treat storm water and other remediation waters, currently planned through early 2016.
- Demolish early in 2016 the remaining buildings, structures, utilities, and other features to support construction of the ET Cover East.
- Phase the demolition of stormwater management structures to prevent stormwater and associated sediment from running offsite.
- Perform all work in a manner that is protective of human health and the environment, efficient, and cost-effective.
- Salvage or recycle materials from the demolition activities to the extent possible, and dispose of or recycle debris appropriately.
- Manage stormwater runoff through collection, treatment, and discharge.
- Consider the impacts of weather on the project when scheduling the work and plan to mitigate impacts.
- Provide protection from groundwater infiltration during the demolition activities by limiting the amount of time bare soil is exposed at the ground surface.
- In consultation with USFWS, avoid to the extent possible the taking, killing, possession, and transportation (among other actions) of migratory birds, their eggs, parts, and nests, in adherence with the MBTA.

The demolition sequencing plan has been designed to maximize the safety, efficiency, and cost-effective management of the project. The sequencing has been established to fulfill the following objectives:

• Allow for the effective use of the existing facilities to support the demolition activities.

- Protect the existing stormwater system until construction of the ET Cover East.
- Provide emergency storage capacity for stormwater.
- Consider the other IM activities that will be conducted and coordinate the demolition packages accordingly.

In addition to building demolition, removal of the NWE substation and relocation of the 69-kV transmission line will be conducted by NWE. Major objectives of the substation removal and line relocation include:

- Perform all work in a manner that is protective of human health and the environment, efficient, costeffective, and in compliance with applicable regulations.
- In consultation with USFWS, avoid to the extent possible and technically feasible the disturbance of migratory bird nest areas during nesting season.
- Manage stormwater runoff during construction in accordance with applicable regulations.
- Remove electrical utilities from the former Smelter site that would prevent or interfere with construction of the ET Cover East.
- Provide NWE adequate means of accessing the relocated transmission line to complete all needed longterm maintenance activities.
- If present, remove contaminated soil from the substation as required for compliance with applicable state and federal regulations (NWE will be responsible for all activities related to removal and proper disposal of all materials and soils within the substation).
- Provide for temporary power supply to HDS WTP and other onsite buildings until they are demolished.

5.2.2 Design and Construction Features

Phase 3 demolition activities will remove all remaining buildings, structures, debris, utilities, and other features from the footprint of the ET Cover East. Demolition work will be sequenced with the ICS 2 and ET Cover East to provide stormwater management. As such, the work will be sequenced to maintain functionality of the HDS WTP through 2016, or longer if needed, and associated portions of the stormwater collection and storage system.

The structures that will be demolished in 2015 and 2016 are shown in Figure 1-3.

Technical requirements for demolition include the following:

- Recycling and salvage will be required to maximize use of sustainable remediation approaches.
- Solid, nonorganic debris that is not suitable for recycling or salvage will be placed onsite in the fill areas under the ET Cover East.
- Aboveground structures, to include walls and associated foundations, will be removed to the top of the adjacent grade. Concrete reinforcing steel and other metal protruding from concrete will be cut so that it does not extend above grade.
- Demolition excavations or below-grade areas in the Phase 3 demolition area will be backfilled and compacted in a manner that provides an incompressible, void-free fill to prevent detrimental settlement to the overlying ET Cover East.
- Concrete and concrete masonry unit debris will be reduced in size as part of the process to remove the reinforcing steel for recycling. The particles will be small enough to allow placement and compaction in an incompressible, void-free fill to prevent detrimental settlement to the ET Cover East.

- Pavements, concrete slabs, and reinforced polyethylene membrane covers will be broken or perforated so that water will not perch on the layers under the ET Cover East.
- Underground utilities will be abandoned and the ends will be cut and capped. Larger-diameter pipes and conduits will be filled to eliminate voids under the fill.
- Diesel fuel from the Pump House will be properly disposed of in advance of demolition.
- The former X-ray room in Building 10 contains lead lining that will be removed in advance of demolition.
- Iron filings associated with Warehouse Annex 4 are USEPA property and will be removed in advance of demolition.
- Decommissioning the HDS WTP will include collection and transport of residual water and water used for decommissioning, proper disposal of all remaining reagents, and removal of all sludge collected from tanks, sumps, and piping in buildings 73, 74, 75, 76, 77, 78, 79, and 83. Water collected from the decommissioning process will be collected in the Tank Farm (two 1-million-gallon tanks). Depending on water quality and volumes, the collected water will be either treated for discharge, evaporated within the tanks, or shipped offsite to an appropriate disposal facility.
- Demolition of the Rodeo Tank will include protecting the existing stormwater piping entering the tank to allow future use.

The above-grade concrete walls, slabs, foundations, and footings will be demolished using a track-mounted excavator equipped with hydraulic breakers and pulverizers. Horizontal surfaces will be fractured to reduce subsurface disturbance. Footings and foundations will be exposed by an excavator that will excavate around each below-grade structure to gain access.

Specific design and construction features associated with substation demolition and transmission line relocation are not currently available. Design criteria and construction features will be provided by NWE by early 2015.

5.2.3 Construction and Quality Management

Key construction and quality management activities and issues associated with Phase 3 demolition are as follows:

- Sequencing mechanical demolition techniques should help ensure safe working conditions during the building demolition.
- Various excavators equipped with special attachments will be used to demolish the building in a controlled manner with minimal dusting.
- The approach used to conduct the Phase 3 demolition will be employed to reduce the work force, minimize dust and waste, and prevent potential exposure to workers and the community. Materials will be segregated and staged into universal waste and recyclable waste piles for disposal. Throughout construction, site personnel and equipment will salvage all potential ferrous and nonferrous metals to maximize recycling value.
- Buried utilities will be removed concurrent with foundation demolition; smaller utilities will be cut and capped, larger utilities will be plugged. Exposed utilities will be removed.
- Trash, carpet, insulation, glass, wall partitions, and other materials will be removed from the interior and exterior of the structures after abatement. These "soft" demolition activities will be carried out by skid steers and small tracked vehicles.
- The structures will generally be demolished using a "top-down" approach. The structures generally consist of steel and concrete framing on concrete and concrete at-grade foundations. Steps will be taken to reduce the amount of below-grade demolition and soil disturbance. Mechanical demolition

equipment such as hydraulic excavators equipped with special attachments (e.g., breakers and shears) will be used to improve worker safety, facilitate sorting and recycling, and reduce the release of dust.

- Where the building structures are removed, remaining foundations and intact, below-grade slab foundations will be broken up to prevent potential subsurface ponding areas. Any pavement left intact will then be fractured (but not removed) as part of subsequent interim or remedial measure construction.
- Construction and quality management requirements associated with substation demolition and transmission line relocation will be performed by NWE in accordance with their policy and procedures.
- Monitoring wells designated for removal or abandonment will be removed or abandoned in accordance
 with the *Borehole Abandonment Plan for the Former Asarco East Helena Facility* (Hydrometrics, 2010).
 Wells will be abandoned in a manner that effectively and permanently prohibits the movement of water
 (vertically and horizontally) within the abandoned borehole. A borehole abandonment documentation
 form will be completed for each monitoring well that is decommissioned.

5.2.3.1 Materials Management

ERM abatement will be conducted before demolition begins and will include the removal, management, and disposal of existing nonhazardous, hazardous, and regulated building materials. ERM identified through building surveys includes mercury in switches and gauges, lead-based paint, light bulbs (fluorescent, mercury vapor, and sodium), and asbestos-containing material. These materials will be handled, transported, and disposed in accordance with regulatory requirements.

Properly dewatered sludge and other select nonliquid demolition debris such as broken concrete, pavements, and brick, will be placed in the ICS 2. Suitable materials will be sent to recycling facilities. Remaining demolition debris will be disposed of offsite at appropriate facilities, depending on the nature of the waste. Additional information regarding management of waste is provided in Section 6.

5.2.3.2 Protective Measures during Implementation

Demolition activities will follow all applicable federal, state, and local laws and regulations as well as any specific site or permit requirements. Contractors working on the site will comply with the site-specific health and safety plan, and will be required to develop and follow plans related to asbestos-containing material (ACM) regulations, Universal Waste Management, recycling, dust control, stormwater pollution prevention, site security, and decontamination. Protection of migratory birds will be performed in accordance with an Avian Protection Plan (APP) prepared to support construction activities. The APP covers the advanced review of construction/demolition areas, bird nesting deterrents (such as closing up or netting off potential nesting locations), and establishment of buffers for active nests.

5.2.4 Preliminary List of Drawings and Specifications

Design drawings and technical specifications of the Phase 3 demolition activities, the ICS 2, and both the ET Cover East and West are included in Appendix A.

5.3 Interim Cover System 2

5.3.1 Key Design Objectives

Key design objectives for the ICS 2 construction are summarized as follows:

- Construct an interim cover that will protect consolidated soil and sediment until the ET Cover East is constructed.
- Design the ICS surface and finished grades to enable noncontact runoff to be shed to perimeter drainages.
- Manage stormwater runoff during construction in accordance with applicable regulations.

- Perform all work in a manner that is protective of human health and the environment, efficient, costeffective, and in compliance with applicable regulations.
- In consultation with USFWS, avoid to the extent possible and technically feasible the disturbance of migratory bird nest areas during nesting season.
- Provide adequate engineered fill capacity to consolidate all of the excavated soil removed from the PPC Realignment.
- Incorporate soil consolidated from the PPC Realignment into a prepared subgrade on which to build the ET Cover East.
- Provide a native cover soil layer that prevents direct contact with the consolidated soil, protects the soil from erosion, reduces infiltration in advance of ET Cover construction, and minimizes ET Cover System construction costs.
- In consultation with USFWS, avoid to the extent possible the taking, killing, possession, and transportation (among other actions) of migratory birds, their eggs, parts, and nests, in adherence with the MBTA.

5.3.2 Design and Construction Features

The ICS 2 will be constructed over the eastern portion of the former Smelter site. The area was selected to preserve and protect infrastructure scheduled for demolition in 2016 and to leave open a corridor in the center of the site to provide access for potential future source removal or Tier II remedial actions (see **Figure 1-1**). The ICS 2 will be constructed in three layers. The lowest layer in the ICS 2, the engineered fill layer, will be consolidated material from the PPC Realignment. This layer will be capped with a low-permeability native soil layer, and a biobarrier/erosion protection cover layer.

The engineered fill layer of the ICS 2 will be designed and constructed to accept the excess soil generated by the PPC Realignment, meet grading requirements to manage and control runoff, and provide a subgrade capable of supporting the ET Cover East. The engineered fill layer is expected to consist solely of material excavated from the PPC Realignment.

The ICS 2 will be capped with 12 inches of native soil. This cap will include a 6-inch-thick layer of compacted sandy clay, covered by a 6-inch-thick layer of 6-inch-minus gravel, acting as the bio-barrier/subgrade for the ET Cover East. The gravel layer of the cap will also provide erosion protection for the sandy clay layer.

5.3.3 Construction and Quality Management

Implementation considerations associated with constructing the ICS 2 include coordination of the PPC Realignment and haul operations, placement, compaction, and grading of the subgrade materials; management of stormwater runoff collection and treatment during construction; and erosion control during and following construction.

5.3.3.1 Materials Management

Construction of the ICS 2 will involve the dewatering, excavation, transport, and placement of approximately 207,000 yd³ of soil from the PPC Realignment. For cost effectiveness and construction efficiency, as noted in Section 5.1.3.1, PPC Realignment activities will be sequenced concurrently with the ICS 2 construction. Soil excavated from the PPC Realignment will be loaded into haul trucks and transported directly to the ICS 2 consolidation location within the AOC where it will be moisture-conditioned (if required) and compacted into place. Dewatering of the materials will occur before excavation to the maximum extent possible. Sequencing construction in this manner will facilitate protective and efficient implementation by minimizing handling and processing activities and stockpiling requirements.

5.3.3.2 Protective Measures during Implementation

Construction of the ICS 2 will fulfill specific requirements to ensure that work is conducted in a manner that is safe, protective of the environment, and in accordance with applicable permits, laws, and regulations. The design and contract specifications will require measures to safely handle and control erosion of material from the PPC Realignment during consolidation of this material within the ICS 2. Measures will be taken to prevent spillage during transport. Traffic routes, laydown and parking areas, and other temporary facilities and controls will be specified to reduce effects on nearby residences and the environment. In addition, temporary erosion and sedimentation control plans (including the SWPPP, as discussed in Section 7) will be implemented for work and material processing areas.

Construction of the cap and erosion protection layers of the ICS 2 will take place after the engineered fill has been brought to grade. Infiltration of contact runoff will be for the shortest possible timeframe needed to allow for safe and cost-efficient construction. As early in the construction sequence as possible, the top layers of the ICS 2 will be placed and noncontact runoff directed to perimeter drainages.

5.4 ET Cover System (East and West)

5.4.1 Key Design Objectives

Key design objectives associated with the ET Cover System (including ET Covers East and West) are as follows:

- Provide sufficient capacity to store infiltration, thereby reducing percolation through contaminated media and subsequent leaching to groundwater.
- Provide physical separation between consolidated material and the ground surface.
- Inhibit bioturbation and animals from contacting consolidated material.
- Resist wind and water erosion.
- Prevent inundation from flooding events.
- Meet media cleanup objectives for soil, as described in Section 5.5, and surface water, i.e., DEQ-7 standards (MDEQ, 2012), by designing a cover surface and stormwater conveyance structures that manage and control stormwater.
- Protect human health and the environment by designing a cover system footprint that incorporates existing site access controls including fencing, signs, and gates.
- In consultation with USFWS, avoid to the extent possible and technically feasible the disturbance of migratory bird nest areas during nesting season.

5.4.2 Design and Construction Features

The ET Cover System will be constructed in stages. The ET Cover West will be completed over the existing ICS 1 in 2015. In 2016, the remaining half of the cover will be constructed over the ICS 2 and central corridor. Because the ET Cover System will be completed in stages, the fill will be placed in four primary locations: the perimeter access road, the ICS 1, the ICS 2, and the central corridor. The footprint of the perimeter access road was selected to provide long-term access to the ET Cover System and long-term slag pile operations, maintenance, and recycling.

The ET Cover West will be placed directly over the existing ground surface, which is the armored biobarrier layer (i.e., the top layer of the ICS 1). The ET Cover East will be placed on the biobarrier surface of ICS 2 and in the central corridor over engineered fill consisting of excess soil from the PPC Realignment. In the central corridor, the entire ET Cover System (biobarrier, capillary break, storage layer, and topsoil layer) will be placed above the engineered fill and no interim cover layer will be necessary.

The thickness of the ET Cover storage and amended storage layers were designed using two hydraulic models: HYDRUS-1D and the Desert Research Institute (DRI) analytical method. Both methods used site-specific climate data and laboratory test results for soil moisture retention and gradation for soil from two potential borrow areas. Percolation rates were predicted using the HYDRUS-1D model to design appropriate cover thickness and select appropriate soil properties (Appendix B). The capillary break layer increases the water-holding capacity of the overlying storage layer by providing a gradation and permeability contrast between the two layers. The biobarrier layer inhibits animals from burrowing into contaminated soil by providing enough rock-to-rock contact to make digging difficult. In addition to providing water-holding capacity, the amended storage layer is designed to support a plant community that will remove moisture from the cover by evapotranspiration.

The finish grade surface of the ET Cover System will be steep enough to avoid ponding water on the ground surface and flat enough to avoid promoting erosion.

5.4.3 Construction and Quality Management

Construction of the ET Cover System will involve the excavation, transport, and placement of approximately 600,000 yd³ of soil from the PPC Realignment and borrow areas. For cost effectiveness and construction efficiency, PPC Realignment activities will be sequenced concurrently with construction of both portions of the ET Cover System (East and West). Soil excavated from the PPC Realignment and borrow areas will be loaded into haul trucks and transported directly to the ET Cover East and West locations within the AOC, where it will be moisture-conditioned (if required) and compacted into place. Sequencing construction in this manner will facilitate protective and efficient implementation by minimizing handling activities, and stockpiling requirements.

Testing of ET cover materials will be performed using an independent testing laboratory. The sampling and testing proposed to meet QA/QC requirements will be included within the ET Cover implementation plan and submitted to MDEQ prior to construction for review.

5.5 Cleanup Standards for Surface Soil

One of the design criteria for the final exposure surfaces of the PPC Realignment and ET Cover System are the cleanup standards for arsenic and lead in surface soil. The draft CMS Work Plan proposed potential cleanup standards and their basis as presented in Table 2-2 of the CMS Work Plan. Additional evaluation of the cleanup standards has been completed based on anticipated future use. The reasonably anticipated future use for the portion of the former Smelter site covered by the ET Cover System, and the PPC Realignment and its floodplain, is currently considered to be recreational. An arsenic cleanup standard of 794 milligrams per kilogram (mg/kg) was selected to meet the recreational land use criterion defined in the East Helena Superfund Site Operable Unit 2 (OU-2) Record of Decision (ROD), and a lead cleanup standard of 650 mg/kg was selected to be protective of ecological receptors (Gradient, 2010 and USEPA, 2005), as summarized in **Table 5-1**.

In order to evaluate whether these criteria would also be protective of other constituents of potential concern (COPCs) identified in the Phase II RFI, a tiered evaluation approach was used in which soil data were compared against conservative USEPA Regional Screening Levels and state of Montana background soil concentrations (Hydrometrics, 2013c). Of the 16 COPC metals, arsenic and lead were identified as presenting the highest percentage of exceedances against the screening criteria. As described in the OU-2 ROD, "... once areas are cleaned up to address lead and arsenic, low-level risks of exposure to the other, coexisting contaminants are further minimized" (USEPA, 2009).

TABLE 5-1

Cleanup Standards for Arsenic and Lead in Surface Soil Interim Measures Work Plan 2015/2016

Constituent Cleanup Standard (mg/kg)		Rationale	
Arsenic	794	Consistent with the East Helena OU-2 ROD	
Lead	650	Criterion for the Protection of Ecological Receptors	

Notes:

mg/kg = milligrams per kilogram

OU = Operable Unit

ROD = Record of Decision

Remediation Waste Management

This section describes the proposed approach for managing remediation waste associated with implementation of the proposed 2015 and 2016 IM components.

6.1 Use of the Area of Contamination

A RCRA AOC has been designated as part of the implementation of the Facility remediation activities. The description and rationale for the AOC was approved by USEPA in their conditional approval of the IM Work Plan 2012, dated August 28, 2012. As shown in **Figure 6-1**, the AOC covers Parcels 16 and 19 (the former Smelter site operating area); the area of Parcel 15 containing CAMUs 1 and 2, portions of Tito Park, Lower Lake, and Upper Lake; the portion of Parcel 8 west of State Highway 18; and Parcels 10, 11, 12, 17, 18, and 23. The ability to consolidate hazardous remediation waste within the designated AOC allows interim and final remedial measures to be conducted in a protective, efficient, sustainable, and cost-effective manner, and also reserved CAMU capacity for the management and treatment of other hazardous remediation waste that clearly should be segregated from site soil.

Two onsite CAMUs have been approved, constructed, and filled, and final closure was completed in November 2014. The onsite CAMUs were constructed to manage remediation waste generated during the site cleanup. CAMUs 1 and 2 were constructed by ASARCO on Parcel 15 and the southwestern corner of Parcel 19. CAMU 1 was constructed in 2001 with a final cover placed in 2008. CAMU 2 was constructed in 2008 and used to manage remediation waste and debris from cleanup operations. CAMU 2 was closed in November 2014 with a final cover.

6.2 Remediation Waste Management in 2015 and 2016

The remediation waste expected to be associated with implementation of the 2015 and 2016 IM components is summarized in **Table 6-1** and described briefly in the following paragraphs. Detailed work plans, as appropriate, for each of the components described will be prepared during final design, or will be required submittals as part of the construction contract(s).

6.2.1 Prickly Pear Creek Realignment

PPC Realignment is estimated to require the excavation of more than 800,000 yd³ of soil. Although the majority of soil to be excavated is not contaminated and would not be considered a remediation waste, investigation work to date has indicated that a portion of the surface soil has high concentrations of COPC metals. All excavated material that will not be reused in the PPC channel or floodplain reconstruction is considered remediation waste and may be consolidated within the ET Cover System boundary. Appropriately detailed soil and remediation waste management plans will be prepared as part of final design for the IMs. The plans may include testing if necessary to develop the appropriate management of excavated material. Protocols for stockpiling, transportation, and dust suppression to minimize potential contaminant migration during construction will be specified during detailed design.

6.2.2 Phase 3 Demolition

Remediation waste management associated with the Phase 3 demolition activities is summarized as follows:

- Consistent with previous demolition work conducted, demolition will encourage the appropriate beneficial reuse of debris, and incorporate a recyclable material plan for proper handling of materials believed to have salvage or recycle value.
- Given that the majority of the demolition work will be performed within the footprint of the ET Cover System, concrete rubble and debris can be stockpiled, consolidated, and used as appropriate for fill.

TABLE 6-1

Interim Measures Remediation Waste Management

Interim Measures Work Plan 2015/2016

IM Component	Remediation Waste	Disposition	
2015			
Interim Cover System 2 Construction	PPE and decontamination waste	Transport heavily soiled PPE and solid decontamination waste to appropriately permitted offsite disposal facility.	
Removal of Substation and Relocation of 69-kilovolt Line	TSCA and non-TSCA PCB waste	If encountered, NWE will transport PCB materials to an appropriately permitted offsite disposal facility.	
2015 through 2016			
Prickly Pear Creek Realignment	Soil	Soil with metals concentrations meeting cleanup standards will be used for reconstruction; soil exceeding applicable criteria will be consolidated within the ET Cover System footprint.	
	Decontamination Water	Implement best management practices according to the approved SWPPP and comply with the MPDES General Permit for Stormwater Discharges Associated with Construction Activities.	
	Stormwater and Construction Dewatering	Manage water from construction dewatering activities within the work areas, treat (if required), and discharge in accordance with MPDES General Permit for Construction Dewatering Activities.	
	Debris	Evaluated for consolidation within the ET Cover System footprint	
ET Cover System (East and West)	PPE and decontamination waste	Transport heavily soiled PPE and solid decontamination waste to appropriately permitted offsite disposal facility.	
Phase 3 Demolition	Debris	Building debris that is not suitable for salvage or recycling will be evaluated for consolidation within the ET Cover System footprint	
	Lead-based paint materials	Transport to appropriately permitted offsite disposal facility.	
	Miscellaneous nonliquid and solidified chemicals	Transport to appropriately permitted offsite disposal facility.	
	Asbestos from building structures	Transport to appropriately permitted offsite disposal facility	
	Flushing water or stormwater	Collect and treat in the onsite HDS WTP. Discharge treated water per MPDES permit (MT0030147).	
	ACM, TSCA, liquid waste not specified above, and universal waste (for example: batteries and mercury-containing equipment)	Transport to appropriately permitted offsite disposal facility.	
	Process residual sludge	Transport to appropriately permitted offsite disposal facility.	
Monitoring Well Decommissioning	Debris	Evaluated for consolidation as fill within the ET Cover System footprint	
ACM = asbestos HDS WTP = high-der	Contamination s-containing material nsity sludge water treatment plant a Pollutant Discharge Elimination Syste	em	
	l protective equipment		
percona			

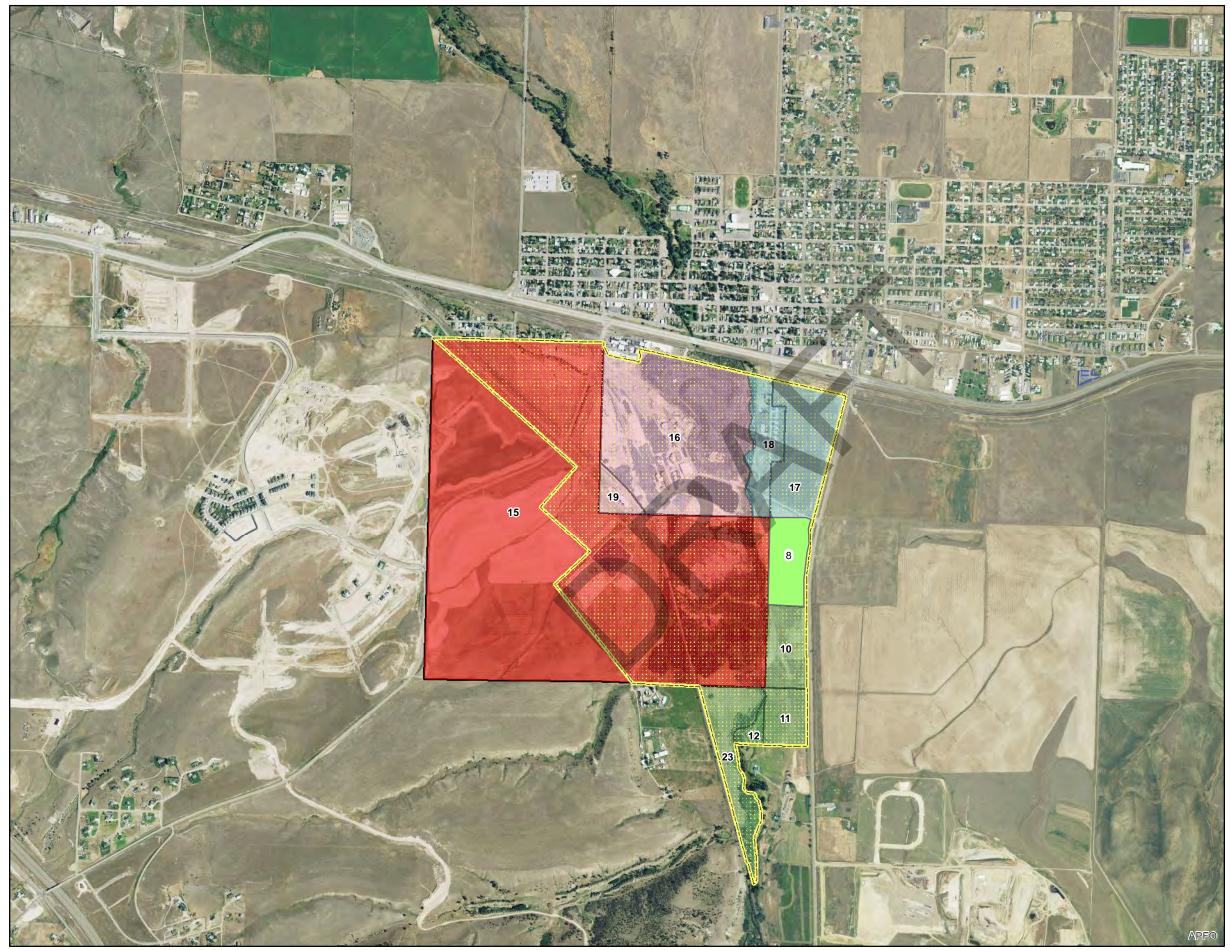
- PPE = personal protective equipment TSCA = Toxic Substances Control Act
- PCB = polychlorinated biphenyl
- NWE = NorthWestern Energy

Excavation of soil may be necessary as part of the underground utility/infrastructure work. Because all of the utility relocation work is being done within the footprint of the AOC, soil that is excavated will be temporarily stockpiled adjacent to the work area and then placed back in the excavation as fill.

Control of stormwater runoff will be a priority throughout the demolition activities. To direct and control runoff as areas are demolished, fumed slag or other fill will be placed at predetermined interim grades in the demolition areas. The grading plan will be designed to coordinate with the ET Cover System, and channel clean runoff in a controlled manner to proposed drainage discharge areas. During demolition, stormwater will be collected and managed as currently permitted under the HDS WTP MPDES permit.

6.2.2.1 Substation Removal and Transmission Line Relocation

NWE will be conducting the work associated with removing the substation and relocating the 69-kV transmission line. Any remediation waste management associated with this work will be handled by NWE.

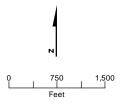

6.2.2.2 Monitoring Well Decommissioning

For monitoring wells less than 20 feet deep, well casing and screens will be pulled in accordance with ARM 36.21.810. Any decommissioning debris will be evaluated for placement as fill within the ICS 2 or subgrade for the ET Cover East.

6.2.3 Interim Cover System and ET Cover System Construction

No remediation waste is expected to be generated during construction of the ICS 2 and the ET Cover System, with the exception of personal protective equipment and decontamination waste, which will be transported to a permitted offsite disposal facility.

At the completion of ICS 2 and the ET Cover System construction, the stormwater runoff will no longer be in contact with soil affected by former Smelter site operations. Stormwater runoff from the ET Cover System will report to three locations; one on the north end of the former Smelter site and two on the south end, as shown on the design drawings. Stormwater runoff from ICS 2 and the ET Cover System will be managed in accordance with the SWPPP developed in accordance with the Montana Multi-Sector Permit for Stormwater Discharges Associated with Industrial Activity.



DEN \\COBRA\PROJ\MONTANA_ENVIRONMENTAL_TRUST_PROJECT\GIS\MAPFILES\FIGURE6_1.MXD_ZANDERSO 12/18/2014 12:23:23 PM

VICINITY MAP MONTANA Helena Project Location Sources: Esri, HERE, DeLorme, USGS, Internap, increment P Corp., NRCAN,

LEGEND

Portion of Parcel 8 West of State Highway 518 Parcel 15 Parcels 16 and 19 Parcels 17 and 18 Parcels 10, 11, 12, and 23 Area of Contamination Boundary

Figure 6-1 Area of Contamination Boundary Interim Measures Work Plan–2015/2016 East Helena, Montana

CH2MHILL:

Status of Permitting Activities and Approvals

This section provides an update to the federal, state, and local permit and licensing measures outlined in the IM Work Plans 2012, 2013, and 2014, and discusses the permits under evaluation for 2015 and 2016.

7.1 Past Permitting and Authorization Activities

7.1.1 Joint Application and Conditional Letter of Map Revision

The Joint Application for Proposed Work in Montana's Streams, Wetlands, Floodplains, and Other Waterbodies (Joint Application) is used to simultaneously apply for several different water resource permits from multiple permitting agencies. In September 2012, Joint Application No. 1 for the PPC Temporary Bypass project was submitted to the City of Helena, the U.S. Army Corps of Engineers (USACE), MDEQ, and the Lewis and Clark Conservation District (LCCD). This work was conducted concurrently with the submittal of the CLOMR No. 1 for the PPC Temporary Bypass.

The CLOMR No. 1 approval was received in December 2012, and all other agency approvals under Joint Application No. 1 (including the 404, 318, 310, and City of East Helena Floodplain Permit) were received by February 2013.

Joint Application No. 1 was submitted to USACE to address work necessary to install the PPC Temporary Bypass and did not include the proposed soil removal actions for the TPA. However, the proposed TPA actions did not disturb additional wetlands beyond those identified in Joint Application No. 1. Therefore, a request was made to USACE, MDEQ, and LCCD to provide an administrative authorization of the actions as an amendment to Joint Application No. 1. A technical memorandum summarizing the proposed activities, with figures illustrating the work, was submitted to these agencies as part of the authorization process.

7.1.2 Floodplain Development Permit

Because the excavation in Tito Park altered the location and elevation of the regulatory floodplain to a greater degree than was shown in CLOMR No. 1, an updated Floodplain Development Permit was obtained from the City of East Helena. Additional Hydrologic Engineering Centers River Analysis System (HEC-RAS) modeling, reflecting the removal of Tito Park, was performed and submitted to FEMA for their PPC project file. A request was made to FEMA for a written letter of concurrence that the TPA source removal project is consistent with the CLOMR issued for the PPC Temporary Bypass (Case No. 12-08-0919R, December 4, 2012), and that it meets the minimum requirements of the National Flood Insurance Program. The concurrence letter from FEMA was the basis for subsequent TPA source removal authorization amendments to the existing PPC Temporary Bypass 404, 318, and 310 permits (by USACE, MDEQ, and LCCD) and an updated Floodplain Development Permit from the City of East Helena. As part of the permit process, and before issuing the updated permit, the City of East Helena solicited public comments on the application for a 15-day period. The Floodplain Development Permit from the City is anticipated to be issued in January 2015.

7.1.3 Montana Dam Safety Act

In May 2013, the Dam Safety Office of the Montana Department of Natural Resources and Conservation issued a determination that Smelter Dam does not impound at least 50 acre-feet of water. Therefore, a downstream hazard evaluation will not need to be performed, an operating permit will not be required, and a demolition permit will not need to be obtained for removal of the dam.

7.1.4 National Emissions Standards for Hazardous Air Pollutants (NESHAP) Compliance

In compliance with ARM Title 17, Chapter 74, Subchapters 3 and 4, NESHAP notifications were submitted for Demolition Phase 1 and 2 activities in 2013. Acknowledgements were received from MDEQ for Demolition

Phase 1 originally on April 8, 2013, and subsequently (as related to project revisions) on June 12 and July 11, 2013. Acknowledgements were received from MDEQ for Demolition Phase 2 on June 25, 2013 (with no follow-on revisions).

7.1.5 Montana Pollutant Discharge Elimination System Permits

The Custodial Trust holds the following two MPDES permits for ongoing site remedial operations: (1) an individual permit (MT0030147) that provides authorization to discharge treated effluent from the HDS WTP to an outfall in Lower Lake, and (2) authorization under the General Permit for Stormwater Discharges Associated with Industrial Activity (MTR000072). In addition, the Custodial Trust holds two additional MPDES permits for the remedial construction activity: (1) construction dewatering permit, and (2) construction stormwater permit.

7.1.5.1 HDS Plant Discharge

The Custodial Trust holds an MPDES Minor Industrial Individual Permit Number MT0030147 for authorization to discharge under the MPDES program. This permit allows for the discharge of treated effluent from the HDS WTP to an outfall located on Lower Lake. The HDS Plant will need to remain operational as long as necessary to treat contact stormwater collected from the former Smelter site, as well as other remediation waters.

7.1.5.2 Industrial Stormwater Discharges

The former Smelter site is permitted to discharge stormwater associated with industrial activities to waters of the United States pursuant to the MPDES General Permit for Stormwater Discharges (MTR000072). In accordance with permit requirements, stormwater management at the site is accomplished in accordance with an approved SWPPP. However, there have been no smelting operations at the plant site since April 2001. An updated SWPPP, representing current site conditions, was prepared for the Custodial Trust by Hydrometrics and submitted to MDEQ on November 10, 2014.

7.1.5.3 Construction Dewatering Discharges

Construction of the PPC Temporary Bypass channel required construction dewatering. Water was pumped from the work area into sediment ponds, from which the water either percolated into the ground or flowed over a weir and into PPC. Authorization to discharge under the Construction Dewatering General Permit was applied for and approved by MDEQ in August 2013. This work was completed in October 2013 and the permit was closed out with MDEQ.

7.1.5.4 Construction Stormwater Discharges

Stormwater discharge associated with construction activity, as defined in ARM 17.30.1102 (28), was addressed through the applicable requirements of the MPDES Construction Activity General Discharge Permit obtained for the former Smelter site. The IM designs include all necessary sediment controls needed to meet applicable requirements of the General Discharge Permit. A Notice of Intent (NOI) and SWPPP were submitted before construction after other permits, approvals, and authorizations were obtained. The current permit will remain in effect until a notice of termination is submitted to MDEQ either due to completion of activities covered by the existing permit or due to transfer of responsibilities.

7.1.5.5 Endangered Species Act Compliance

Endangered Species Act (ESA) compliance must be demonstrated for any federal permit approval that may be necessary during the course of IM implementation. A technical memorandum entitled *Montana Environmental Trust Group Endangered Species Act Compliance* (CH2M HILL, 2012b) was issued to USFWS on September 5, 2012. USFWS concurrence that the project complies with the ESA was received by CH2M HILL for the Custodial Trust on September 19, 2012.

7.2 Anticipated 2015 and 2016 Permitting and Authorization Activities

The following permits and authorizations are necessary for execution of the proposed 2015 and 2016 IM activities, including construction of the PPC Realignment, implementing Phase 3 demolition, removal of the NWE substation and relocation of the 69-kV line, and the placement of the ICS 2 and both ET Cover East and West.

7.2.1 Joint Application No. 2 and CLOMR No. 2

The USACE must issue a 404 Permit to any party proposing project work that will place fill material into "waters of the U.S." The purpose of the permit is to provide regulatory review of the activity and restore or maintain chemical, physical, and biological integrity of the nation's waters. A Joint Application No. 2 was submitted to USACE in October 2014 to address work necessary to install the PPC Realignment. This application was prepared concurrently with the CLOMR No. 2 for the PPC Realignment. The Joint Application No. 2 provides detailed information on the wetlands affected by all IMs and provides the mitigation plan for those impacted wetlands and subsequent monitoring.

The CLOMR No. 2 application was submitted in May 2014 and approved on November 6, 2014. The 404 Permit was approved on December 5, 2014. FEMA has completed the technical review process and the Custodial Trust has notified adjacent landowners of the proposed changes. Changes to water surface elevations resulting from the PPC Realignment are below acceptable change criteria. All other agency approvals under Joint Application No. 2 (including the 318 and City of East Helena Floodplain Permit) are expected by February 2015.

7.2.2 310 Permit

The Montana Natural Streambed and Land Preservation Act requires any nongovernmental entity proposing work that physically alters or modifies the bed or banks of a perennially flowing stream to obtain a 310 Permit from the County Conservation District. The purpose of the permit is to minimize sedimentation and protect streams from adverse development. The Custodial Trust submitted Joint Application No. 2 to the LCCD in October 2014. The LCCD consults with Montana Fish, Wildlife and Parks in approving the permit with recommendations and requirements. Additionally, the LCCD makes a recommendation to MDEQ on the 318 Authorization for short-term water quality standard for turbidity. The agency approved the 310 permit under Joint Application No. 2 on December 12, 2014.

7.2.3 318 Authorization

MDEQ provides 318 Authorization for short-term water quality standards for turbidity based on recommendation from the FWP during the 310 Permit review process. The 318 Authorization provides a measure of protection to water quality while allowing for construction activities in or proximal to state surface waters. MDEQ received a copy of Joint Application No. 2 and is participating in the agency review process. Agency approvals for the 318 Authorization under Joint Application No. 2 are expected by February 2015.

7.2.4 Floodplain Development Permit

The Montana Floodplain and Floodway Management Act requires a Floodplain Development Permit be obtained by any entity planning construction within a designated 100-year floodplain. The purpose of the permit is to restrict development and uses that present hazards, thereby limiting the expenditure of public revenues for emergency operations. The Custodial Trust submitted Joint Application No. 2 to the administering body, the City of East Helena, in October 2014. A CLOMR is required as well for the review process and is under review by FEMA with approval expected in November 2014. Approval of the floodplain development permit by the City of East Helena is expected in January 2015.

7.2.5 MPDES Permits

For the proposed 2015 and 2016 IM activities, the associated MPDES permitting incorporates HDS WTP discharges, industrial stormwater discharges, construction dewatering discharges, and construction stormwater discharges as described in the following subsections.

7.2.5.1 HDS WTP Discharges

As previously noted in Section 7.1.5.1, the Custodial Trust holds an MPDES Minor Industrial Individual Permit Number MT0030147 for authorization to discharge under the MPDES program. This permit allows for the discharge of treated effluent from the HDS WTP to an outfall located on Lower Lake. The MPDES permit is valid until July 31, 2015, and the current IM schedule indicates that the HDS Plant will continue to operate into at least 2016 and possibly longer in the event that the IM schedule needs to be modified. Therefore, the Custodial Trust is submitting a permit renewal application to MDEQ in early 2015 for the MPDES program, as stated in 40 *Code of Federal Regulations* 122 and adopted by reference in ARM Title 17, Chapter 30 – Water Quality.

The Custodial Trust has also requested (in a letter dated April 21, 2014) that MDEQ issue an administrative order on consent to extend the interim numerical effluent discharge limits for 4 of the 12 constituents currently regulated by the MPDES permit. This is necessary to obviate the need for expensive mechanical system upgrades to the HDS Plant, which are not cost-effective given the relatively short operational life that is currently anticipated.

7.2.5.2 Industrial Stormwater Discharges

The Custodial Trust holds an MPDES General Permit for Stormwater Discharges from Industrial Activity. The current SWPPP (submitted to MDEQ in November 2014) is kept up-to-date to reflect current conditions on the site. A SWPPP update is expected to be prepared and submitted to MDEQ in the summer of 2015 to incorporate the addition of a stormwater discharge outfall to Lower Lake (Outfall 3B).

7.2.5.3 Construction Dewatering Discharges

The PPC Realignment may require a construction dewatering permit. The IM designs will include all necessary controls needed to meet applicable requirements of the MPDES Authorization to discharge under the Construction Dewatering General Permit. An application package for the General Permit will be submitted before construction after other permits, approvals, and authorizations have been obtained.

7.2.5.4 Construction Stormwater Discharges

The permit for stormwater discharge associated with construction activity will be required for ongoing IM activities such as the ICS 2 and both ET Cover East and West. The IM designs include all necessary sediment controls needed to meet applicable requirements of the MPDES Construction Activity General Discharge Permit. The NOI and SWPPP will be submitted to MDEQ before construction after other permits, approvals, and authorizations have been obtained.

7.2.6 Montana Department of Transportation Permits

Any work done within the Montana Department of Transportation (MDT) right-of-way will require the appropriate permit. MDT will be contacted to secure all required permits in advance of starting construction activities. It is not anticipated at this time that work will be completed in any MDT right-of-ways, except delivery of materials to the site by on-highway vehicles in road-legal loads.

7.2.7 Montana Water Use Act (Water Right Permit and Change Authorization)

As noted in the IM Work Plan 2013, the PPC Realignment will require two changes to the Point of Diversion. One change will be required to support the PPC Temporary Bypass, and another will be required to cover the change associated with the PPC Realignment. Existing water rights for the owners legally tied to the Wilson Ditch headgate will be affected. Work continues to appropriately address those effects.

7.2.8 City of East Helena - Partial Abandonment of South Montana Avenue

As part of the PPC Realignment, the Custodial Trust will work with the City of East Helena (COEH) in preparing a petition for road abandonment for COEH review and comment that seeks approval to abandon (vacate) a portion of the roads within the area of South Montana Avenue. Communications to date with the COEH indicate the City would like to preserve the existing railroad crossing and the northernmost section of the South Montana Avenue.

The Custodial Trust will work with the COEH to evaluate the additional property needs for providing a new connection to the remaining portion of South Montana Avenue, and new right-of-way for access from Highway 518.

7.2.9 Migratory Bird Treaty Act

The Custodial Trust will continue to coordinate and consult with USFWS and USEPA regarding deterrence activities aimed at minimizing noncompliance with the MBTA associated with all IMs. The MBTA was enacted to protect migratory birds in the U.S. All but a few of the bird species naturally occurring in the U.S. are protected from take under the MBTA, and, therefore warrant consideration to avoid and minimize potential impacts.

In coordination with USFWS, an approach was developed to provide migratory bird protection within the primary nesting areas involved in upcoming construction within the PPC Realignment construction areas. Early clearing outside of the nesting season (before April 15) will be performed as part of a plant salvage and clearing plan, to be implemented in March 2015. In addition, an APP will be prepared which will provide a framework for avoiding impacts to nesting birds and outline response actions in the event that an active nest is found within the project impact area or buffer, either before construction starts or during the course of the PPC Realignment. This APP will satisfy the requirements of the MBTA and identify the types of birds that may nest in the project area and the proposed buffers, monitoring requirements, and reporting standards that will be implemented to demonstrate compliance with MBTA.

SECTION 8 Project Management and Schedule

This section provides an overview of project management activities and the proposed schedule for 2015 and 2016 IM implementation. Organization and lines of communication, public participation, documentation and reporting, and the preliminary schedule are described.

The Custodial Trust will manage all IM activities as part of the responsibilities and obligations set forth in the Settlement Agreement and First Modification to the 1998 Consent Decree. The Custodial Trust will communicate relevant information about the IM task plans, results, and progress to USEPA, as Lead Agency, as well as to the federal and state beneficiaries of the Custodial Trust. Communication will occur on a frequent and timely basis, to review progress on the IMs, to solicit input from the beneficiaries, and to ensure that the beneficiaries are kept well informed of activities onsite.

8.1 Organization and Lines of Communication

The Custodial Trust will procure the services of consultants and contractors to implement the IMs as efficiently and cost-effectively as possible. **Figure 8-1** shows the current overall Project Organization Chart and the lines of communication. **Table 8-1** identifies the anticipated consultant leads for IM design and construction.

TABLE 8-1 Interim Measure Consultant Leads Interim Measures Work Plan 2015/2016

Name	Lead Contact	Description of Role	
CH2M HILL	Jay Dehner: 509-979-5733	Project management and overall engineering design and construction lead for former Smelter site IMs	
Pioneer Technical Services	Joel Gerhart: 406-490-2530	Overall lead for PPC Realignment design, permitting, and construction	
Hydrometrics	Bob Anderson: 406-443-4150	Hydrogeology and engineering design	
NewFields	Cam Stringer: 406-549-8270	Groundwater flow and F&T modeling	
Morrison Maierle Inc.	Mark Brooke: 406-495-3469	Engineering design support and floodplain modeling	
Applied Geomorphology	Karin Boyd: 406-587-6352	Stream geomorphology	
Confluence	Jim Lovell: 406-585-9500	Stream geomorphology	

8.2 Public Participation

Public involvement is a critical part of the overall cleanup process for the former Smelter site. General communication with the public will continue to follow the *Draft Community Relations Plan, Former ASARCO Smelter Facility, East Helena, Montana* prepared by the Custodial Trust (2010), as well as the requirements of the First Modification to the 1998 Consent Decree. In 2014, the Custodial Trust held the following meetings and workshops:

- A series of meetings were held to discuss the Controlled Groundwater Area, including a public/stakeholder meeting held in August 2014.
- A meeting of the East Helena Entire Cleanup Team in Coordination (EHECTIC) was held in March 2014 to provide project stakeholders and the community information on the PPC Realignment design.

• Two Town Hall meetings were held in 2014. In March 2014, a meeting was held to update the community on the PPC Realignment design. An additional Town Hall meeting was held on December 17, 2014, to provide the community another update on the PPC Realignment design. In August 2014, a public/stakeholder meeting was held to update the community on the impacts observed in groundwater as a result of the implementation of several components of the SPHC IM, and the progress of 2014 IM construction activities.

An informational meeting will be held in February 2015 to provide the community with an overview of the 2015 and 2016 IM work described herein.

In addition, the Custodial Trust holds meetings with the EHECTIC group to provide information to key local stakeholders and attends the East Helena City Council meetings. The Custodial Trust's website: http://www.mtenvironmentaltrust.org/east-helena contains links to news on cleanup progress, design documents, meeting materials, and future meeting dates. As described in the IM Work Plan 2014, a video of the PPC Realignment project is available for viewing.

8.3 Documentation and Reporting

The following IM documentation is under development:

- Contract scopes of work and schedules
- Engineering technical reports and memorandums
- Modeling results
- Permit application packages
- Detailed engineering designs (plans and specifications)
- Construction contract packages (drawings and specifications)
- Operation and maintenance plans
- Record drawings and contract close-out documents

Core plans that have been developed for the Facility will be incorporated by reference, or amended as appropriate, to ensure that IM activities follow relevant protocols and methods. Core plans include the following:

- Health and Safety Plan for the East Helena former Smelter site
- QA/QC Plan
- Sampling and Analyses Plans

IM progress will be summarized in the monthly progress reports.

8.4 Preliminary Interim Measure Implementation Schedule

Table 8-2 summarizes key dates for the proposed 2015 and 2016 IM implementation and provides schedule updates for the work proposed and approved in the IM Work Plans 2012, 2013, and 2014. The schedule is considered a living document and will be revised on a regular basis as needed to reflect planned implementation requirements for each IM. The preliminary schedule was developed in coordination with other ongoing work being conducted by the Custodial Trust pursuant to the First Modification. The schedule for these activities is subject to refinement as input is received from the Custodial Trust, beneficiaries, and other stakeholders.

TABLE 8-2

Summary of Proposed 2015 and 2016 Implementation Schedule

Interim Measures Work Plan 2015/2016

East Helena Facility Planning and Construction Activities	Start	End
2015/2016 Interim Measures Work Plan		
Public Comment Period	February 2015	March 2015
U.S. Environmental Protection Agency Approval		April 2015
2015—PPC Realignment		
Bidding and Award	March 2015	May 2015
Construction	May 2015	November 2015
2015—ET Cover West/ICS 2/Phase 3 Demolition Construction		
Bidding and Award	February 2015	May 2015
Construction	May 2015	November 2015
2016—PPC Realignment (including Smelter Dam Demolition)		
Bidding and Award	March 2015	May 2015
Construction	April 2016	October 2016
2016—ET Cover East/Phase 3 Demolition Construction		
Bidding and Award	February 2015	May 2015
Construction	May 2016	October 2016

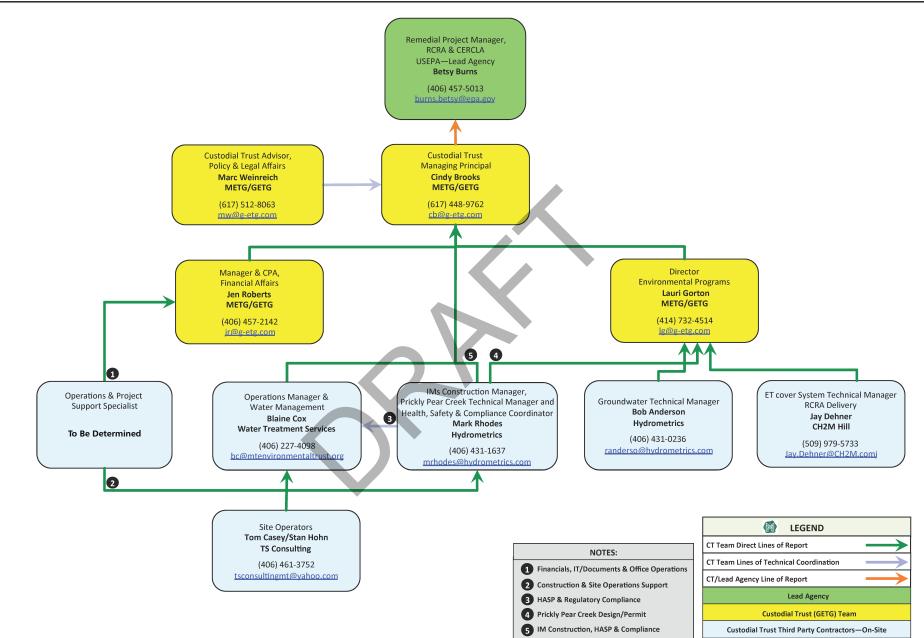


FIGURE 8-1 Project Organization and Lines of Communication Interim Measures Work Plan–2015/2016 East Helena, Montana

References

CH2M HILL. 2012a. Former ASARCO East Helena Facility Interim Measures Work Plan–Conceptual Overview of Proposed Interim Measures and Details of 2012 Activities. Final. Prepared for The Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. September 2012.

CH2M HILL. 2012b. *Montana Environmental Trust Group Endangered Species Act Compliance*. August 28, 2012.

CH2M HILL. 2013. *Former ASARCO East Helena Facility Interim Measures Work Plan—2013*. Final. Prepared for The Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. February 2013.

CH2M HILL. 2014a. *Former ASARCO East Helena Facility Interim Measures Work Plan—2014*. Final. Prepared for The Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. May 2014.

CH2M HILL. 2014b. *Former ASARCO East Helena Facility Corrective Measures Study Work Plan 2013*. Draft. Prepared for The Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. January 2014.

Dreher, Robert G., E. Rockler, M.W. Cotter, L. Johnson/United States District Court for the District of Montana. 2012. First Modification to the 1998 Consent Decree. Civil Action No. CV 98-H-CCL. Case 6:98-cv-00003-CCL. Document 38. Filed January 17, 2012.

Gradient. 2010. *Draft Baseline Ecological Risk Assessment for the East Helena Facility*. Prepared for The Montana Environmental Trust Group, LLC, Trustee of the Montana Environmental Custodial Trust. December 2010.

GSI Water Solutions, Inc. 2014. Phase II RCRA Facility Investigation, East Helena Facility. April 29, 2014.

Hydrometrics. 2010. *Borehole Abandonment Plan for the Former Asarco East Helena Facility*. Prepared for The Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust.

Hydrometrics. 2012. Technical Memorandum: *Upper Lake Drawdown Test*. Prepared for the Montana Environmental Trust Group. September 22, 2012.

Hydrometrics. 2013a. Technical Memorandum: *Surface Soil Sampling for PCBs, NorthWestern Energy Substation*. Prepared for The Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. April 30, 2013.

Hydrometrics. 2013b. *Draft 2013 Groundwater and Surface Water Field Sampling and Analysis Plan, East Helena Facility*. Prepared for The Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. April 2013.

Hydrometrics. 2013c. *Background Concentrations of Inorganic Constituents in Montana Surface Soils*. Project Report. Prepared for Montana Department of Environmental Quality. September 2013.

Hydrometrics. 2014. 2014 Groundwater and Surface Water Corrective Action Monitoring Plan East Helena Facility. Prepared for The Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. July 2014.

Montana Department of Environmental Quality (MDEQ). 2012. *Circular DEQ-7, Montana Numeric Water Quality Standards*. Prepared by: Water Quality Planning Bureau, Water Quality Standards Section, Helena, Montana. October 2012.

Montana Environmental Custodial Trust (Custodial Trust). 2010. Draft Community Relations Plan, Former ASARCO Smelter Facility, East Helena, Montana. May 2010.

Newfields. 2013. DRAFT Groundwater Flow Model Calibration Refinement, Transient Verification, and Interim Measures Support, East Helena Site. Prepared for Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. August 5, 2013.

Newfields. 2014. DRAFT Groundwater Flow Model and Predictive Simulation Update. August 15, 2014.

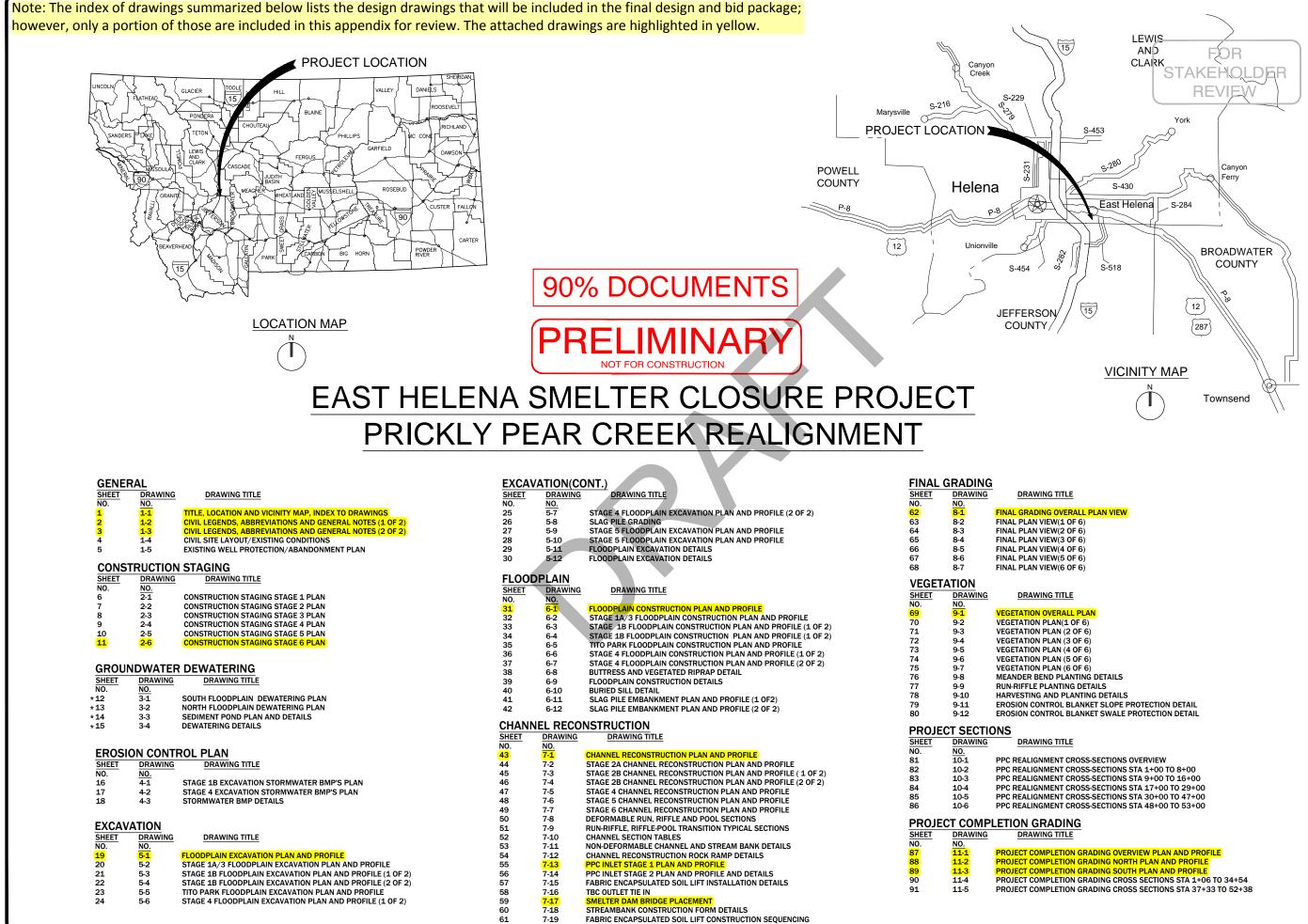
Pioneer Technical Services. 2013. *PPC Realignment Channel Stability Analysis and Engineering Design Report*. July 2013.

Pioneer Technical Services. 2014. *90% Design Basis Documentation for Stakeholder Review, Prickly Pear Creek Realignment Project, East Helena Smelter RCRA Site*. Prepared for Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. October 3, <u>2</u>014.

U.S. Environmental Protection Agency (USEPA). 2005. *Technical Memorandum: Supplemental Ecological Risk Assessment for the East Helena Smelter Site, Montana*. USEPA with technical assistance from Syracuse Research Corporation, Denver, Colorado.

U.S. Environmental Protection Agency (USEPA). 2009. *East Helena Superfund Site, Operable Unit No. 2, Residential Soils and Undeveloped Lands, Final Record of Decision.* USEPA ID: MTD006230346. September.

U.S. Environmental Protection Agency (USEPA). 2012. *Regional Screening Level (RSL) Summary Table - April 2012*. USEPA Web site: <u>http://www.epa.gov/region9/superfund/prg/</u>.



Appendix A Design Details and Supporting Documentation

Select Prickly Pear Creek Realignment Design Drawings

REVISION: DATE: BY: DESC:
DRAWN BY: DESIGNED BY:
CHECKED BY: CEB APPROVED BY: JG
PROJECT NO: DATE:10/1/14
DISPLAYED AS:
COORD SYS/ZONE: <u>NA</u> DATUM: <u>NA</u>
UNITS:NA SOURCE:PIONEER
SCALE IN FEET
-
INO
T GF
NTANA ENVIRONMENTAL TRUST GROUP FORMER ASARCO SMELTER SITE EAST HELENA, MONTANA
L TH 3LTE NTA
NTA SME MO
IMEI tco INA,
RON SAR ELE
A ENVIRONMENTAL TRU KMER ASARCO SMELTER EAST HELENA, MONTAN
IA EI RMF EAS
FOI
ION
L
PRICKLY PEAR CREEK REALIGNMENT TITLE, LOCATION AND VICINITY MAP INDEX OF DRAWINGS
ICKLY PEAR CREEK REALIGNM TITLE, LOCATION AND VICINITY MA INDEX OF DRAWINGS
EAL V] GS GS
PEAR CREEK REALL LE, LOCATI VICINITY N INDEX OF DRAWINGS
N ENO RE
AI AI
U V
DIONEER TECHNICAL SER VICES, INC HELENA, MONTANA 59601 (406) 457-8252
DIONEER TECHNICAL SERVICES. 2016. BROADWAY, STE. C HELENA, MONTANA 58601 (406) 457-8252
SHEET
SHEET 1-1

ABBREVIATIONS

AB	ANCHOR BOLT, ABOVE
ABDN AC	ABANDON
AC	ASPHALTIC CONCRETE AREA DRAIN
ADDL	ADDITIONAL
ADJ	ADJACENT
AGGR	AGGREGATE
AHR	ANCHOR
AJ APPROX	ADJUSTABLE APPROXIMATE
APVD	APPROVED
AUTO	AUTOMATIC
AUX	AUXILIARY
AVG	AVERAGE
@	AT
BETW	BETWEEN
BF	BLIND FLANGE, BOTTOM FACE
BG BLDG	BELOW GRADE BUILDING
BLK	BLOCK
BM	BEAM, BENCHMARK
BOT	BOTTOM
BRG	BEARING
BRKR	BREAKER
BVC	BEGINNING OF VERTICAL CURVE
С С ТО С	CONDUIT, CASEMENT CENTER TO CENTER
CAB	CABINET
СВ	CATCH BASIN, CIRCUIT BREAKER
CC	CONTROL CABLE
CCL	COMPACTED CLAY LAYER
CCP CCS	CENTRAL CONTROL PANEL CENTRAL CONTROL SYSTEM
CDN	COMPOSITE DRAINAGE NET
CIP	CAST IN PLACE
CIP	CULVERT INLET PROTECTION
Cl	CONSTRUCTION JOINT
CL	CENTERLINE
CLSF	CONTROLLED LOW STRENGTH FILL
CLR CMP	CLEAR, CLEARANCE CORRUGATED METAL PIPE
CO	CLEANOUT, CARBON MONOXIDE
CONC	CONCRETE
CONN	CONNECTION
CONSTR	CONSTRUCTION
CONT	CONTINUED, CONTINUATION
COORD	COORDINATE
CRS CRS	COLD ROLLED STEEL CONSTRUCTION ROAD STABILIZATION
CTR	CENTER
CTRD	CENTERED
CU	CUBIC
CU FT	CUBIC FOOT
CU IN	CUBIC INCH
CY, CU YD DET	CUBIC YARD DETAIL
DIA	DIAMETER
DIAG	DIAGONAL
DIR	DIRECTION
DISCH	DISCHARGE
DWG	DRAWING
E	EAST, EMPTY EACH
EA EF	EACH EACH FACE
EL	ELEVATION
ELB	ELBOW
ELC	ELECTRICAL LOAD CENTER
ELEC ENGR	ELECTRIC, ELECTRICAL ENGINEER
EQL SP	EQUALLY SPACED
EQPT	EQUIPMENT
ESC	EROSION AND SEDIMENT CONTROL
EVC	END OF VERTICAL CURVE
EW	EACH WAY
EXP EXP AB	EXPANSION, EXPOSED EXPANSION ANCHOR BOLT
EXP AB EXP JT	EXPANSION ANCHOR BOLT EXPANSION JOINT
EXST, EXIST	EXISTING
EXT	EXTERIOR
FC	FLEXIBLE CONDUIT/ CONNECTOR
FCA	FLANGED COUPLING ADAPTER
FDN	
FG FHY	FINISH GRADE FIRE HYDRANT
FIG	FIGURE
FL	FLOW LINE
FLG	FLANGE

FL	FLOOR	PRES
FLEX FNSH	FLEXIBLE FINISH	PRI PROP
FOB	FLAT ON BOTTOM	PSF
FP	FIELD PANEL	PSI
FPL	FROST PROTECTION LAYER	PSIG
FPM FT	FEET PER MINUTE FOOT OR FEET	PT PT
FU	FORWARD	PVI
G, GND	GROUND	PVMT
GA	GAUGE	PVT
GAL	GALLON	R OR RAD
GALV GC	GALVANIZED GROOVED COUPLING	RC
GCL	GEOSYNTHETIC CLAY LINER	RDCR REF
GVL	GRAVEL	REINF
HDPE	HIGH DENSITY POLYETHYLENE	REQD
HH HORIZ	HANDHOLE HORIZONTAL	RH
HP	HORSEPOWER	RHR
HPT	HIGH POINT	RPE RST
HWL	HIGH WATER LEVEL	RT
IE	INVERT ELEVATION	RTN
I.F. IN	INSIDE FACE INCH(ES)	R/W
INVT	INVERT	S
IP	INLET PROTECTION	SB SCHED
IRRIG	IRRIGATION	SEC
JB	JUNCTION BOX	SED
JTJL	JUNCTION JOINT	SH
L	ANGLE, LENGTH	SIM
LB(S)	POUND(S)	SPEC, SPECS
LCRS	LEACHATE COLLECTION AND RECOVERY SYSTEM	SQ
LDS	LEAK DETECTION SYSTEM	SQ FT SQ IN
LF	LINEAR FEET	ST
LG	LONG	STA
LONG LP	LONGITUDINAL LIGHT POLE	STD
LPT	LOW POINT	STL STRUCT
LR	LONG RADIUS	T&B
LT	LEFT	TAN
LTG, LTS	LIGHTS OR LIGHTING	TBC
MATL MAX	MATERIAL MAXIMUM	TECH
MECH	MECHANICAL	TEL TEMP
MFD	MANUFACTURED	
MFR	MANUFACTURER	THRU
МН	MANHOLE, MOUNTING HEIGHT	TOC
MIN	MINIMUM	TOS
MISC MS	MISCELLANEOUS MANUFACTURER'S STANDARD	TP
MT	MOUNT	TRANSV TX
MTD	MOUNTED	TYP
MTG	MOUNTING	UON
MU	MULCHING	VC
MWS N	MAXIMUM WATER SURFACE	VERT
NA	NOT APPLICABLE	VPC VPI
NEUT	NEUTRAL	VPT
NG	NATURAL GAS	w
NGVD	NATIONAL GEODETIC VERTICAL DATUM	W/
NIC N.O.	NOT IN CONTRACT NORMALLY OPEN	
NO., #	NUMBER	NOTES:
NOM	NOMINAL	1. CONTACT E
N-S	NORTH - SOUTH	BUT NOT SH
NTS	NOT TO SCALE	
OC OD	ON CENTER OUTSIDE DIAMETER	
OF	OVERFLOW	
0.F.	OUTSIDE FACE	
OPNG	OPENING	
OPP OZ	OPPOSITE OUNCE	
PC	POINT OF CURVE	
PCF	POUNDS PER CUBIC FOOT	
PI	POINT OF INTERSECTION	
PJF	PREMOULDED JOINT FILLER	
PL PLYWD	PROPERTY LINE	
	PLYWOOD PUMP	
PNL	PANEL	
POE	POINT OF ENDING	
PP PPC	POWER POLE PRICKLY PEAR CREEK	
PPC	PRICKLY PEAR CREEK	

PRESSURE
PRIMARY
PROPERTY
POUNDS PER SOUARE FOOT
POUNDS PER SQUARE INCH
POUNDS PER SQUARE INCH, GAUGE
POINT OF TANGENCY
PRESSURE TREATED
POINT OF VERTICAL INTERSECTION
PAVEMENT
POINT OF VERTICAL TANGENCY
RADIUS
REINFORCED CONCRETE
REDUCER
REFER OR REFERENCE
REINFORCED, REINFORCING, REINFORCE
REQUIRED
RIGHT HAND
RIGHT HAND REVERSE
REINFORCED POLYETHYLENE
REINFORCING STEEL
RIGHT
RETURN
RIGHT OF WAY
SWITCH
SEDIMENT BASIN
SCHEDULE
SECONDARY
SEDIMENTATION
SHEET
SIMILAR
SPECIFICATIONS
SQUARE
SQUARE FOOT, FEET
SQUARE INCH
STRAIGHT
STATION
STANDARD
STEEL
STRUCTURE
TOP AND BOTTOM
TANGENT
TEMPORARY BYPASS CHANNEL
TECHNICAL
TELEPHONE
TEMPORARY, TEMPERATURE
THICKNESS
THROUGH
TOP OF CONCRETE
TOP OF SLAB
TURNING POINT
TRANSVERSE
TRANSFORMER
TYPICAL
UNLESS OTHERWISE NOTED
VERTICAL CURVE
VERTICAL
POINT OF VERTICAL CURVATURE
POINT OF VERTICAL INTERSECTION
POINT OF VERTICAL TANGENT
WEST
WITH

TES:

PRC

PRCST

PRECAST

POINT OF REVERSE CURVE

> CONTACT ENGINEER FOR ABBREVIATIONS USED BUT NOT SHOWN ON THIS DRAWING.

NOTED

3.

13. CONSTRUCTION ACTIVITY BY OTHERS MAY IMPACT THE WORK CONTEMPLATED WITHIN THIS PACKAGE. THE CONTRACTOR SHALL NOTIFY THE ENGINEER IMMEDIATELY IF A CONFLICT ARISES RELATING TO THE PROGRESS OF THE WORK. FINAL COORDINATION/RESOLUTION OF SUCH CONFLICTS SHALL BE THE RESPONSIBILITY OF THE CONTRACTORS INVOLVED.

14. EXISTING FEATURES AND UTILITIES ARE SHOWN ON THE PLANS BASED UPON INFORMATION AVAILABLE AT THE TIME THE PLANS WERE PREPARED. SHOULD UNIDENTIFIED UTILITY OR SERVICE ELEMENTS BE ENCOUNTERED, NOTIFY THE ENGINEER AND THE APPROPRIATE UTILITY OWNER IMMEDIATELY.

GENERAL SITE

1. SOURCE OF TOPOGRAPHY SHOWN ON THE CIVIL PLANS ARE DASE MAPS PROVIDED BY DJ&A, P.C EXISTING CONDITIONS MAY VARY FROM THOSE SHOWN ON THESE PLANS. THE CONTRACTOR SHALL VERIFY EXISTING CONDITIONS AND ADJUST WORK PLAN ACCORDINGLY PRIOR TO BEGINNING CONSTRUCT ON DEF DER

2. EXISTING TOPOGRAPHY, STRUCTURES, AND SITE FEATURES ARE SHOWN SCREENED AND/OR LIGHT-LINED. NEW FINISH GRADE, STRUCTURES, AND SITE FEATURES ARE SHOWN HEAVY-LINED.

HORIZONTAL DATUM: NAD 83, MONTANA STATE PLANE COORDINATE SYSTEM, INTERNATIONAL FEET.

4. VERTICAL DATUM: N.A.V.D. 88, U.S. SURVEY FEET.

5. MAINTAIN, RELOCATE, OR REPLACE EXISTING SURVEY MONUMENTS, CONTROL POINTS, AND STAKES WHICH ARE DISTURBED OR DESTROYED. PERFORM THE WORK TO PRODUCE THE SAME LEVEL OF ACCURACY AS THE ORIGINAL MONUMENT(S) IN A TIMELY MANNER, AND AT THE CONTRACTOR'S EXPENSE.

6. STAGING AREA SHALL BE FOR CONTRACTOR'S EMPLOYEE PARKING, CONTRACTOR'S TRAILERS AND ON-SITE STORAGE OF MATERIALS.

7. PROVIDE TEMPORARY FENCING AS NECESSARY TO MAINTAIN SECURITY AT ALL TIMES.

8. ELEVATIONS GIVEN ARE TO FINISH GRADE UNLESS OTHERWISE

9. SLOPE UNIFORMLY BETWEEN CONTOURS AND SPOT ELEVATIONS

10. EROSION AND SEDIMENTATION CONTROL MEASURES SHALL BE MAINTAINED AND INSPECTED AS STATED IN THE APPROVED EROSION AND SEDIMENTATION PLAN APPROVED IN THE STORMWATER DISCHARGE PERMIT.

11. ALL CONTRACTORS AND SUBCONTRACTORS SHALL COMPLY WITH THE FIELD SAFETY INSTRUCTIONS APPROVED (FSI)FOR THIS SITE AT ALL TIMES.

12. EXISTING SITE DRAINAGE FLOW PATTERNS/DIRECTIONS SHALL BE MAINTAINED UNLESS OTHERWISE INDICATED ON THE PLANS.

15. ACCESS TO THE GENERAL SITE, AND TO SPECIFIC WORK AREAS SHALL BE LIMITED TO THE LOCATIONS SHOWN ON THE PLANS.

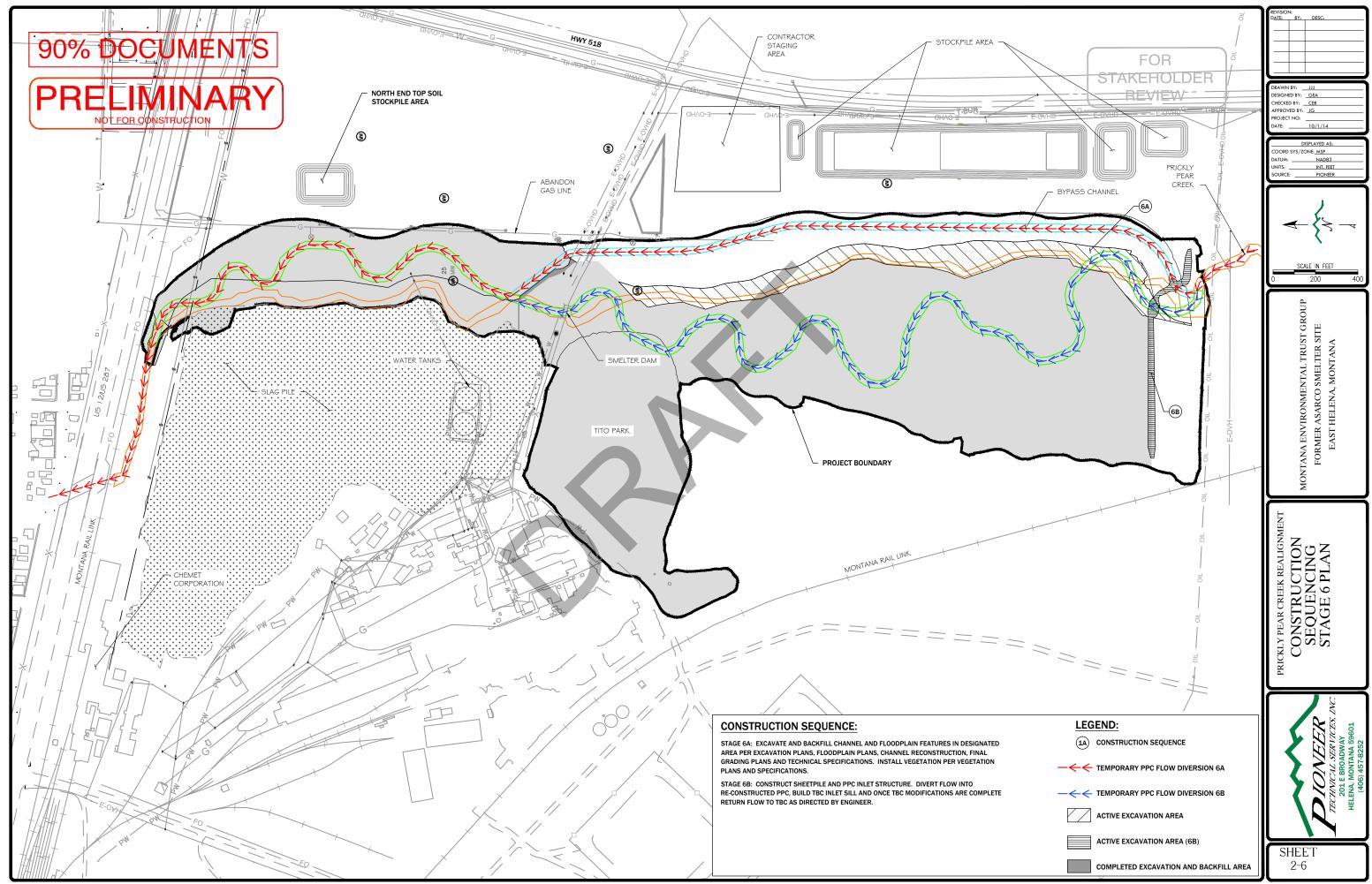
16. WATER FOR CONSTRUCTION ACTIVITIES SHALL BE OBTAINED BY THE CONTRACTOR AT THEIR SOLE EXPENSE. ANY AND ALL PERMITS REQUIRED SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

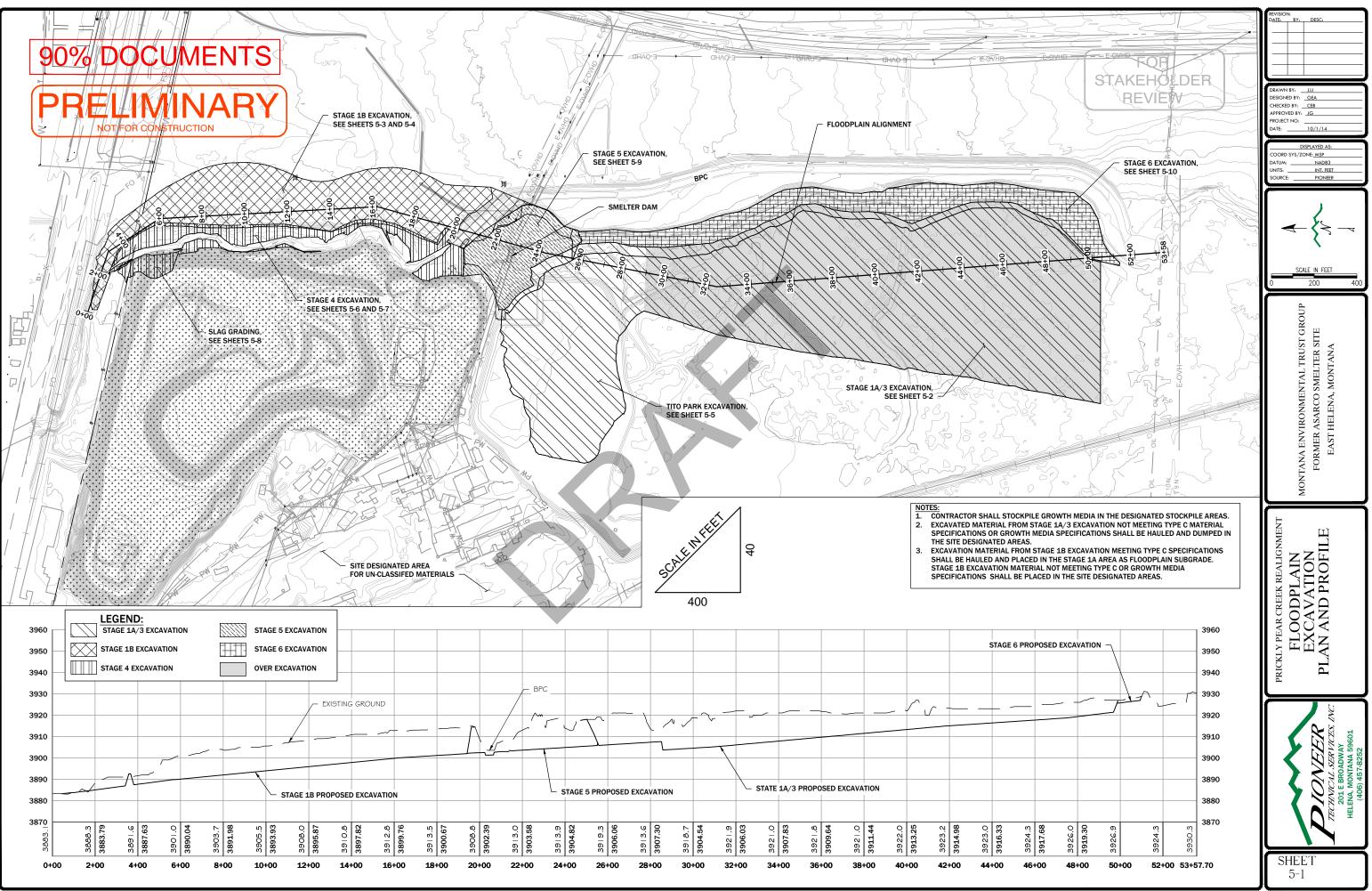
Revision: BY: DESC: DATE: BY: DESC: DESC: DESC: DESC: DESC: CEB APROVED BY: PROJECT NO: DESPLAYED AS: COORD SYS/ZONE; NA DATM: NA DUNTS: NA DIONEER DIONEER
SCALE IN FEET
MONTANA ENVIRONMENTAL TRUST GROUF FORMER ASARCO SMELTER SITE EAST HELENA, MONTANA
PRICKLY PEAR CREEK REALIGNMENT CIVIL LEGENDS ABBREVIATIONS AND GENERAL NOTES (1 OF 2)
C-1 DIONEER TECHNICAL SER VICES INC 2016 BROADWAY, STE. C HELENA, MONTANA 59601 (406) 457-3252

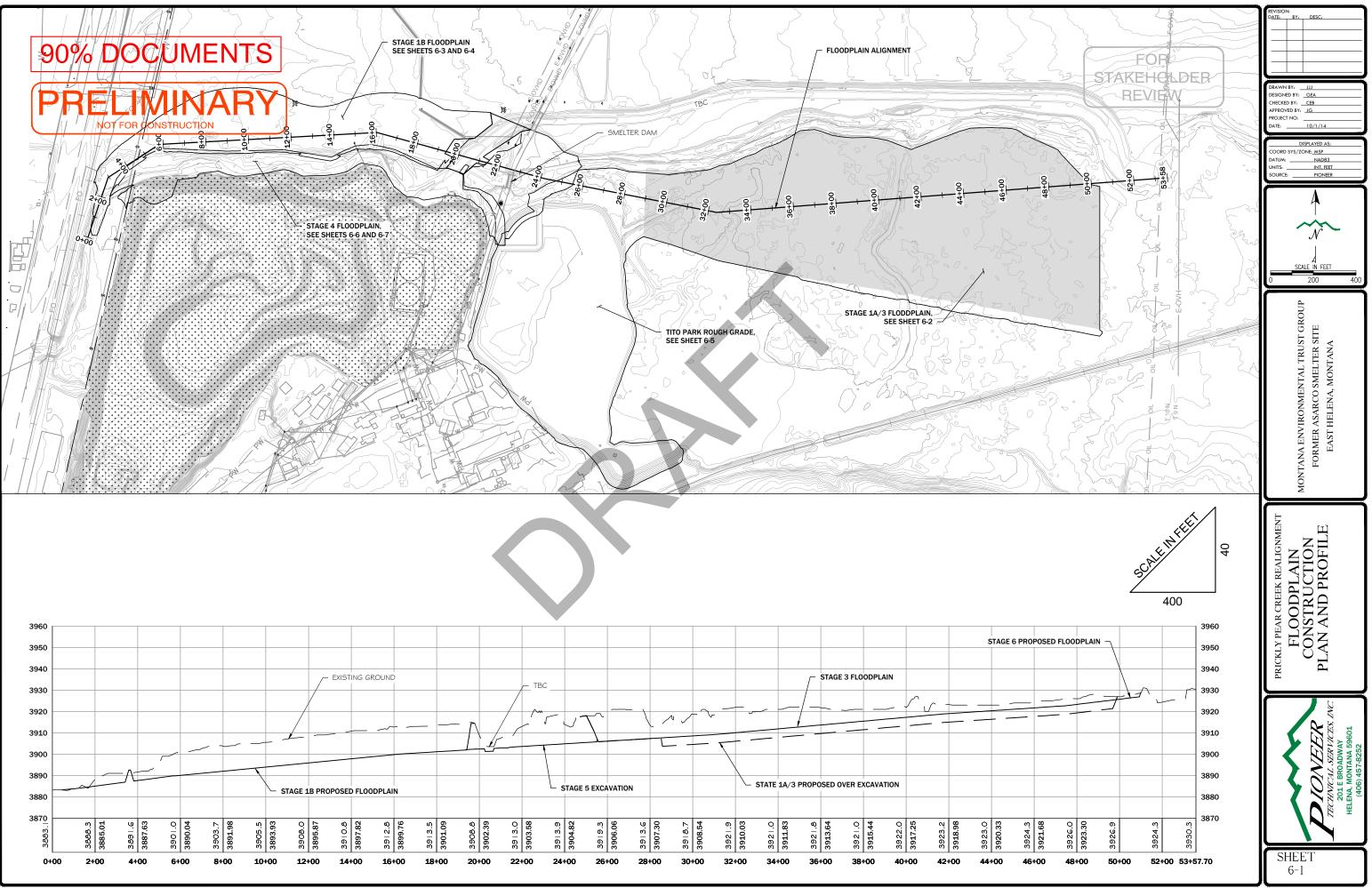
GENERAL NOTE:

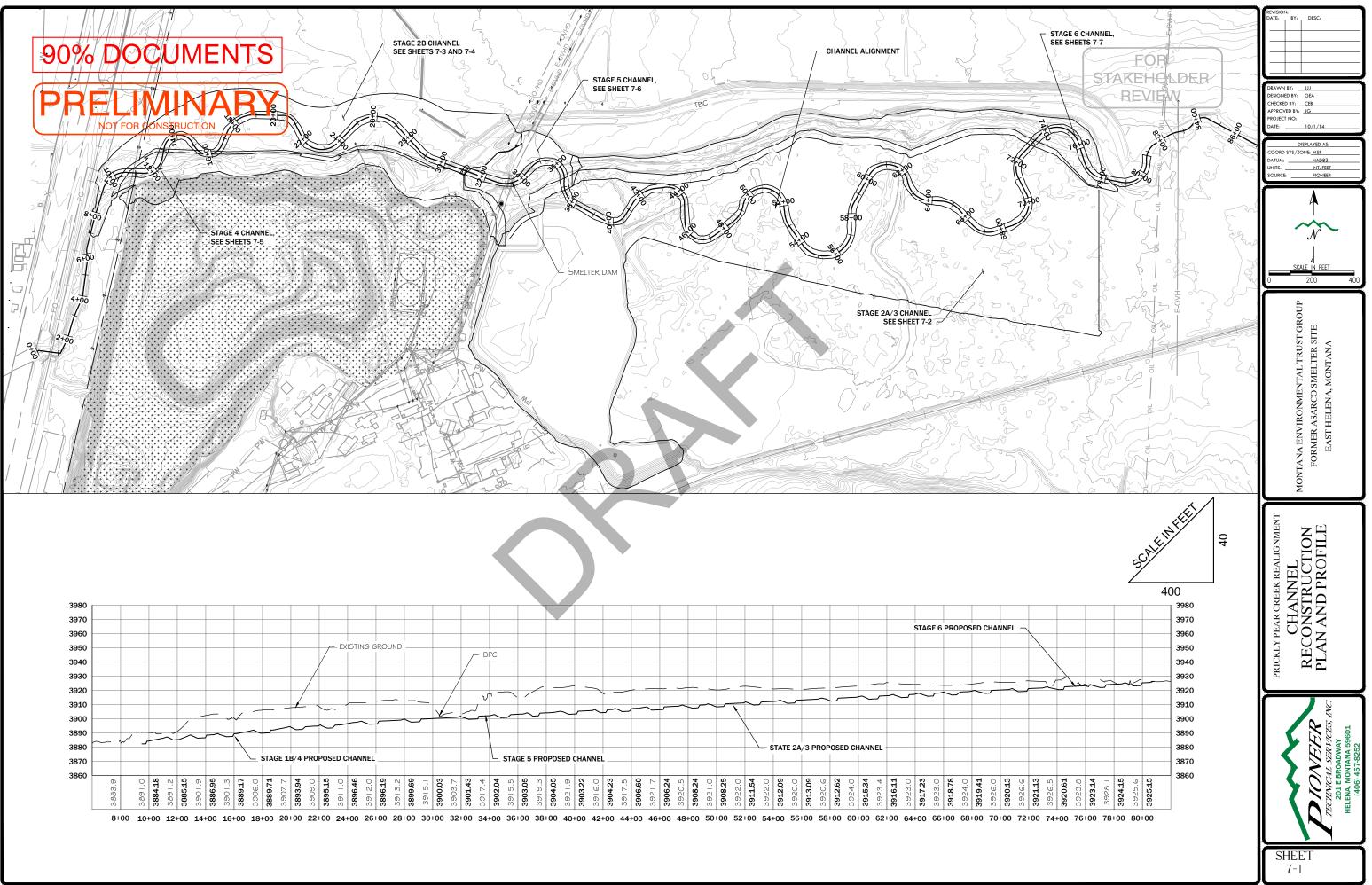
1. THIS IS A STANDARD LEGEND SHEET. THEREFORE, NOT ALL OF THE INFORMATION SHOWN MAY BE USED ON THIS PROJECT.

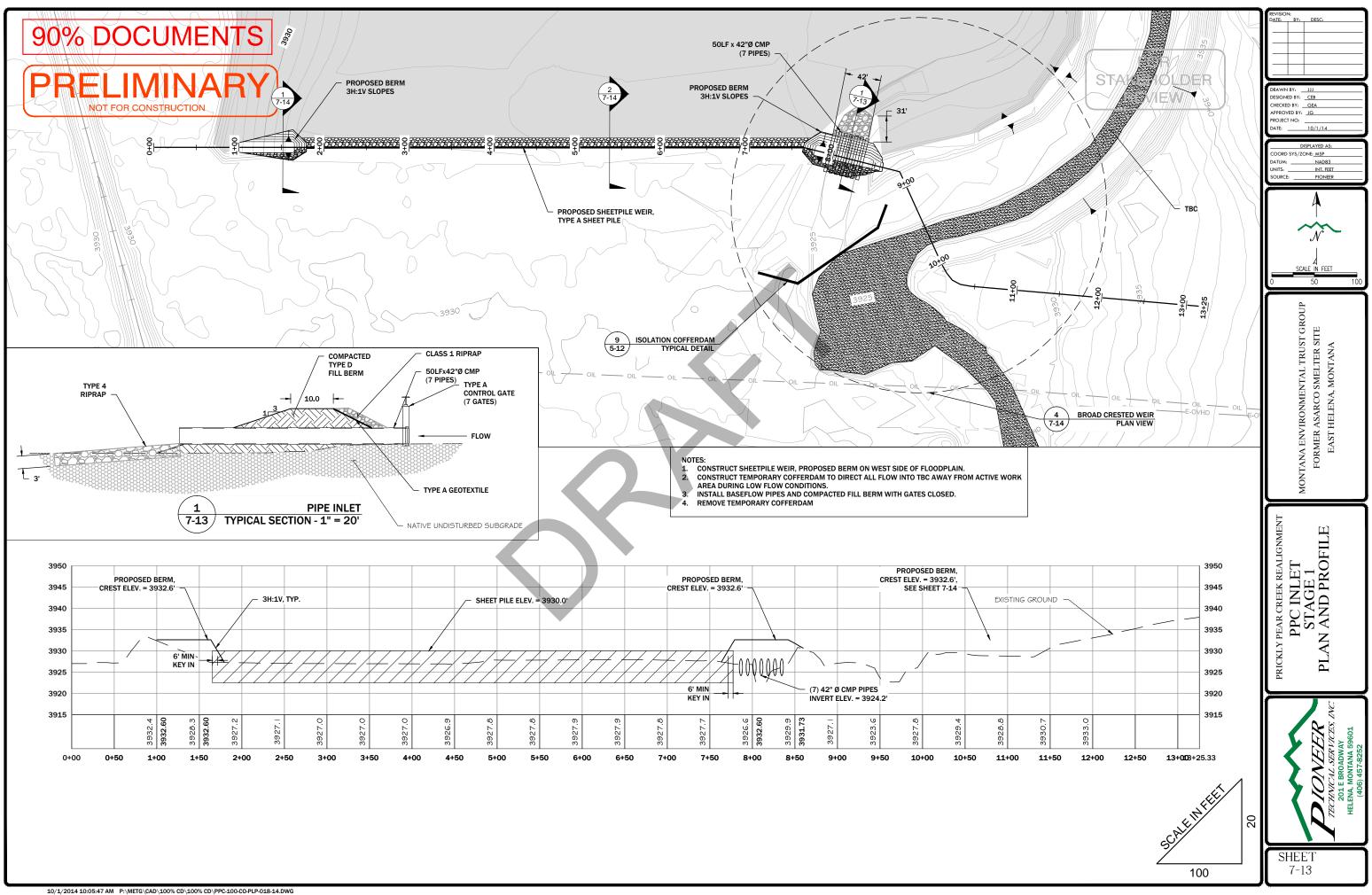
	L LEGEND	
EXISTING	THIS CONTRACT	
× 157.7	⊗ 158.5	SPOT ELEVATION
-155		CONTOUR LINE
	3:1	EMBANKMENT AND SLOPE
		DRAINAGEWAY OR DITCH
		COMPLETED CONSTRUCTION
		CURRENT FLOW AREA
0	D OR P	MANHOLE D = STORM DRAIN P = PROCESS
	E	ELECTRICAL MANHOLE
• _H		ELECTRIC HANDHOLE
0	•	POST OR GUARD POST
\longrightarrow	\rightarrow	GUY ANCHOR
—	*	FIRE HYDRANT
-0-	•	UTILITY POLE
*	¥	LIGHT POLE
	° BM	BENCH MARK
	\triangle	SURVEY CONTROL POINT OR POINT OF INTERSECTION
\sim	\sim	BRUSH/TREE LINE
ⓒ ₩ ↔	C) ₩ C)	TREE
·	<u> </u>	PROPERTY LINE
		CENTER LINE, BUILDING, ROAD, ETC.
		STAGING OR WORK AREA LIMITS
	N 1000.00 E 1000.00	STRUCTURE, BUILDING OR FACILITY LOCATION POINT - COORDINATES
	🔶 B-1	BORING LOCATION AND NUMBER
		STRUCTURE, BUILDING OR FACILITY
×	×	SINGLE SWING GATE
××	××	DOUBLE SWING GATE
× ×	× ×	SLIDING GATE
<u> </u>	=======	GUARD RAIL
×	×	CHAIN LINK FENCE
////	////	WIRE FENCE
\rightarrow	\rightarrow	CULVERT
	· / ·	TEMPORARY CONSTRUCTION FENCE
W	W	WATER LINE
——————————————————————————————————————	——————————————————————————————————————	AIR LIQUID LINE
—— FO ——	FO	FIBER OPTIC BURIED
OHP	OHP	POWER OVERHEAD
G	G	NATURAL GAS
BT	BT	TELEPHONE LINE BURIED
OIL	OIL	HIGH PRESSURE OIL LINE
PW	PW	PRESSURIZED WATER LINE

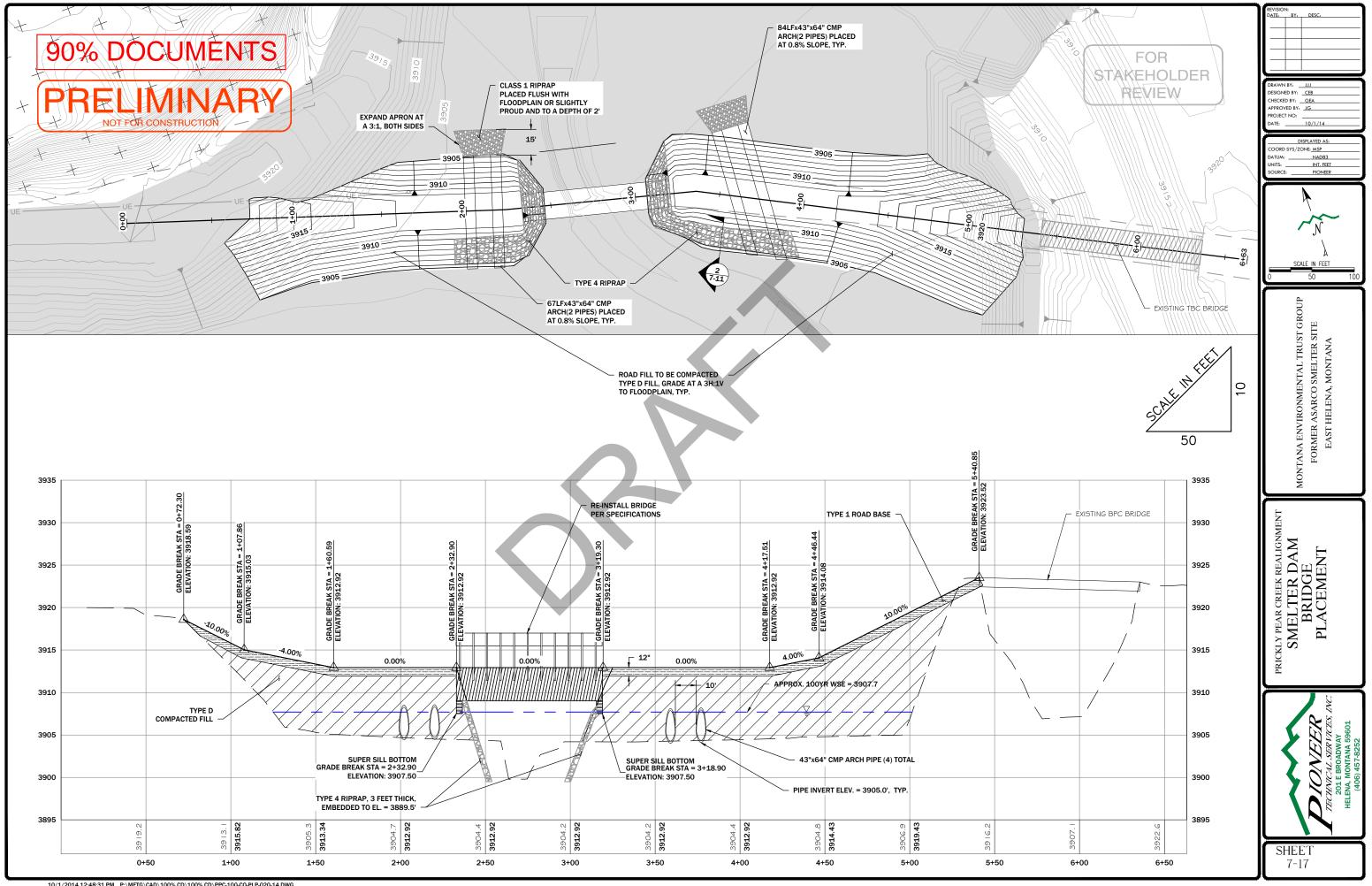


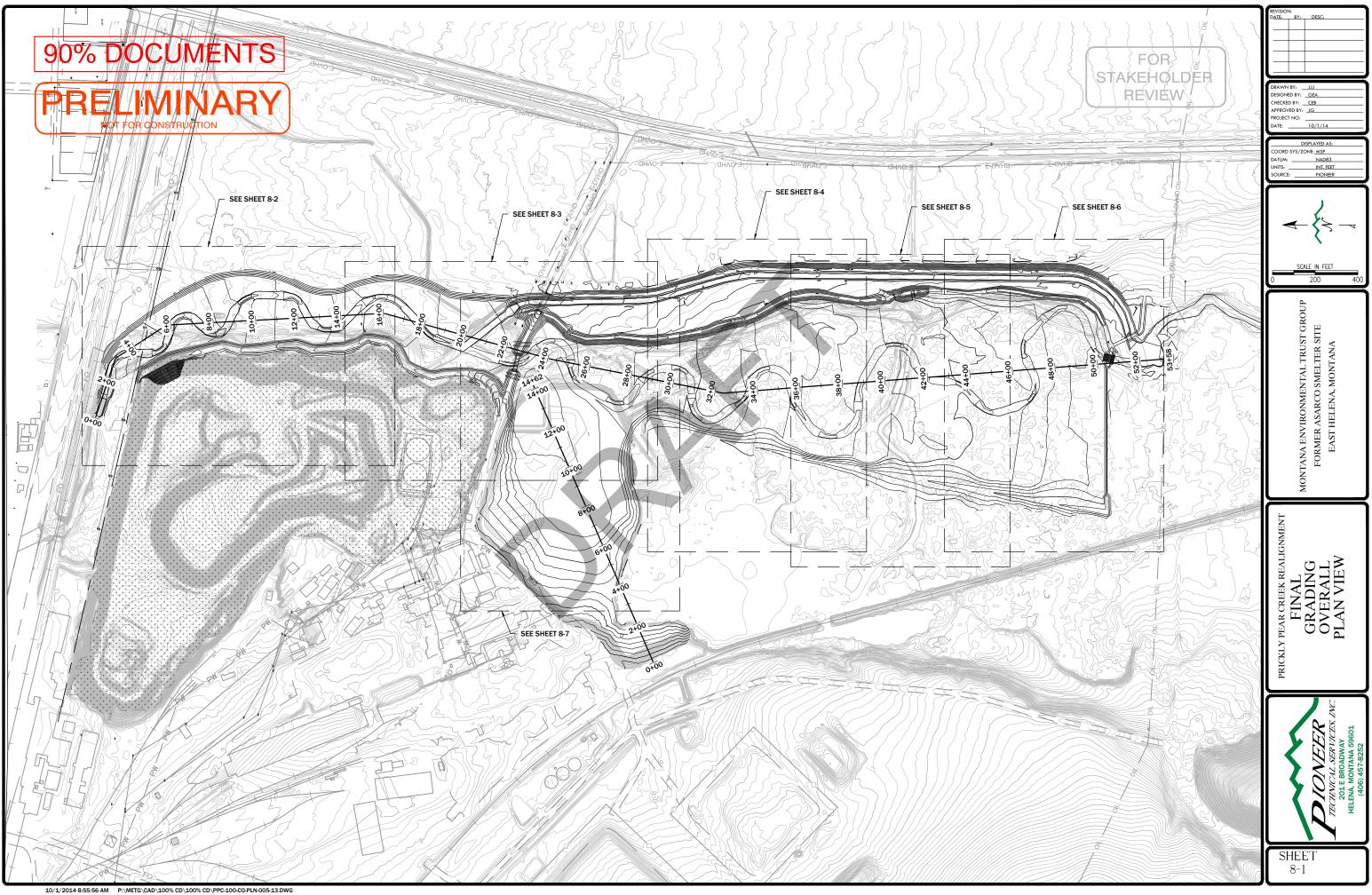

GENERAL NOTE: 1. THIS IS A STANDARD LEGEND SHEET. THEREFORE, NOT ALL OF THE INFORMATION SHOWN MAY BE USED ON THIS PROJECT.


FOR STAKEHOLDER REVIEW

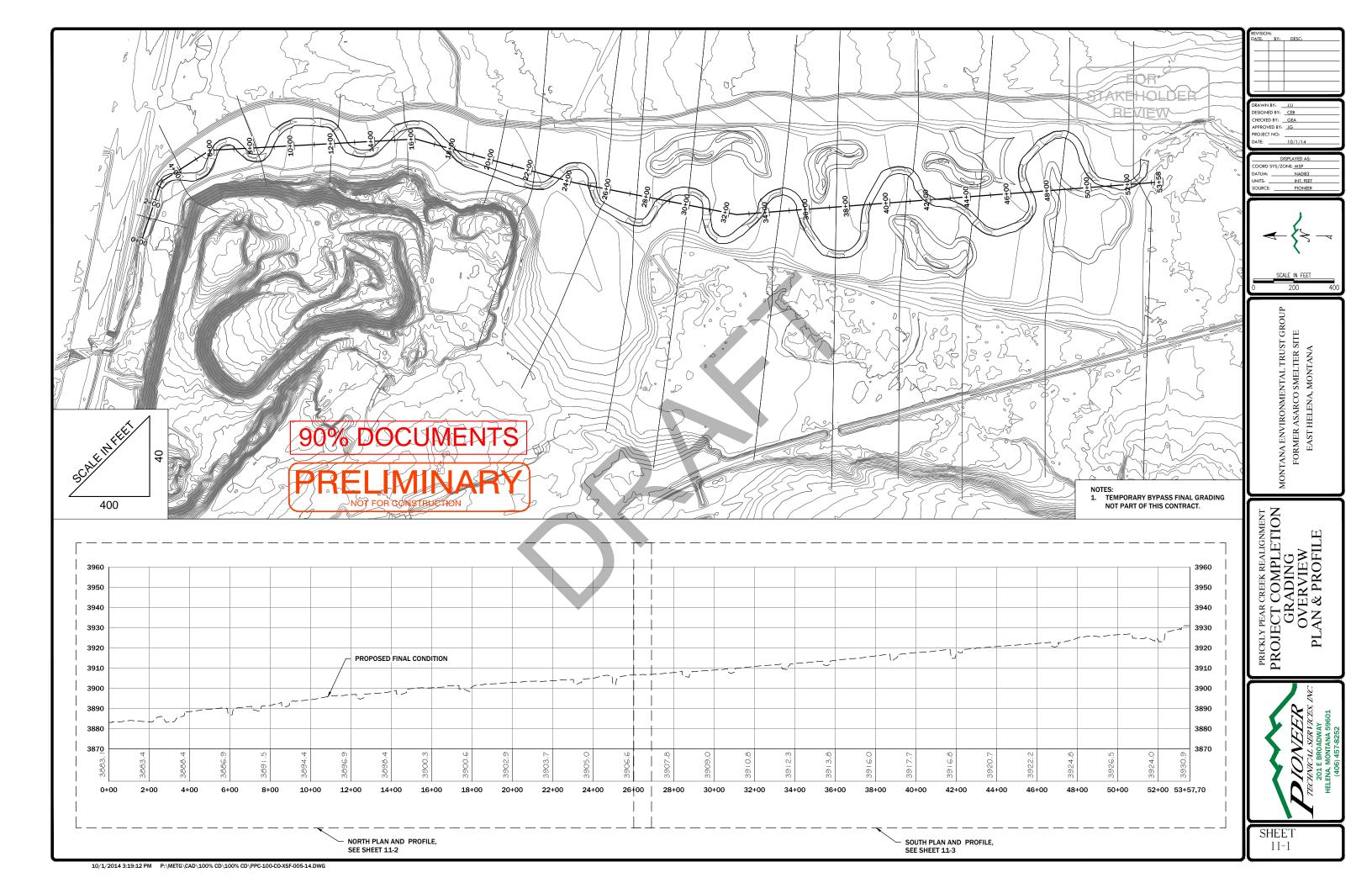


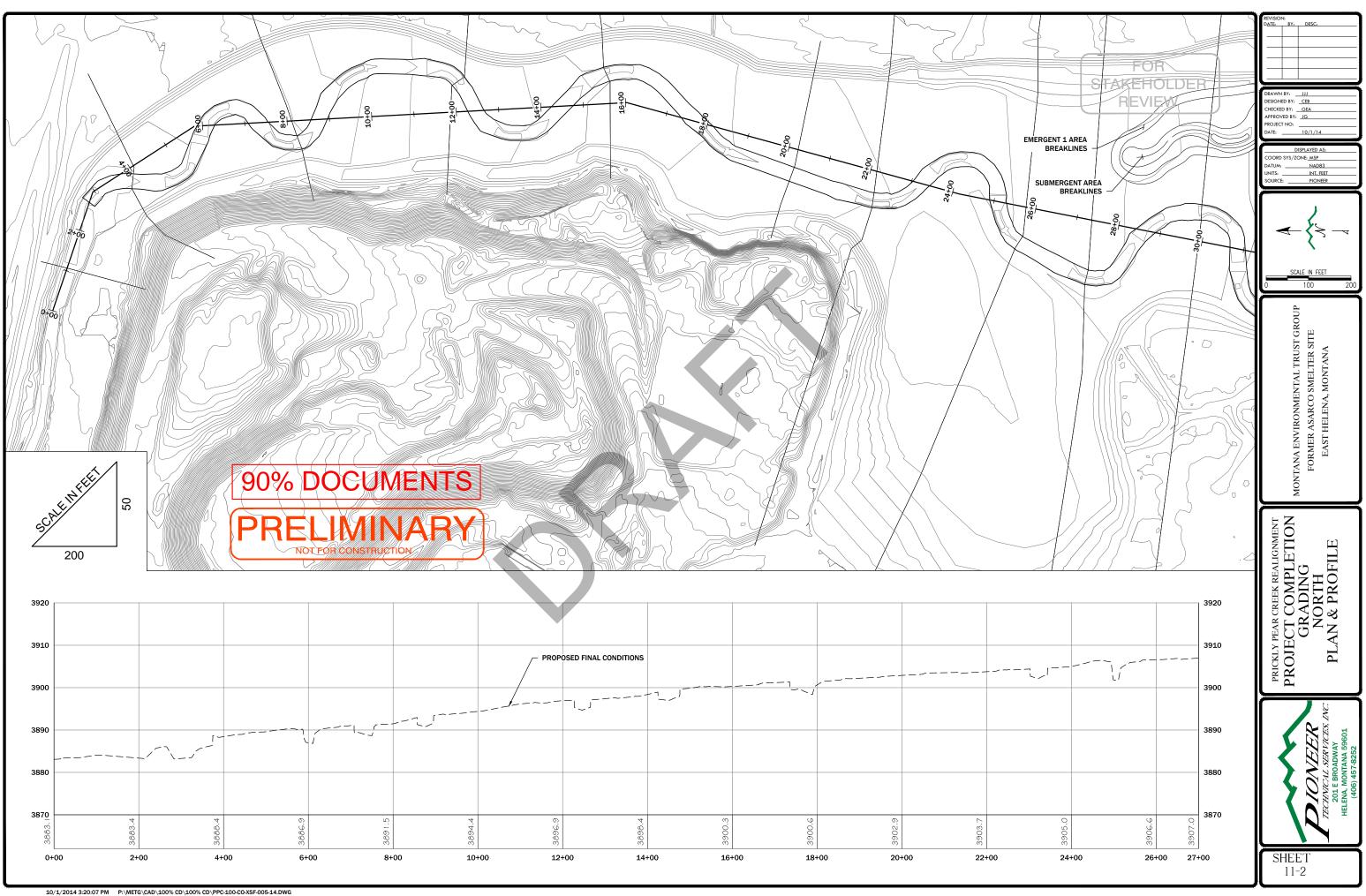

REVISION: DATE: BY: DESC:
DRAWN BY: DESIGNED BY:
CHECKED BY: APROVED BY: PROJECT NO: DATE:10/1/14
DISPLAYED AS: COORD SYS/ZONE. NA DATUM: NA UNITS: NA SOURCE: PIONEER
SCALE IN FEET
MONTANA ENVIRONMENTAL TRUST GROUP FORMER ASARCO SMELTER SITE EAST HELENA, MONTANA
PRICKLY PEAR CREEK REALIGNMENT CIVIL LEGENDS ABBREVIATIONS AND GENERAL NOTES (2 OF 2)
DIONEER TECHNICAL SER VICES, INC 2015. BROADWAY, STE. C HELENA, MONTANA 59601 (406) 457-8252
SHEET 1-3

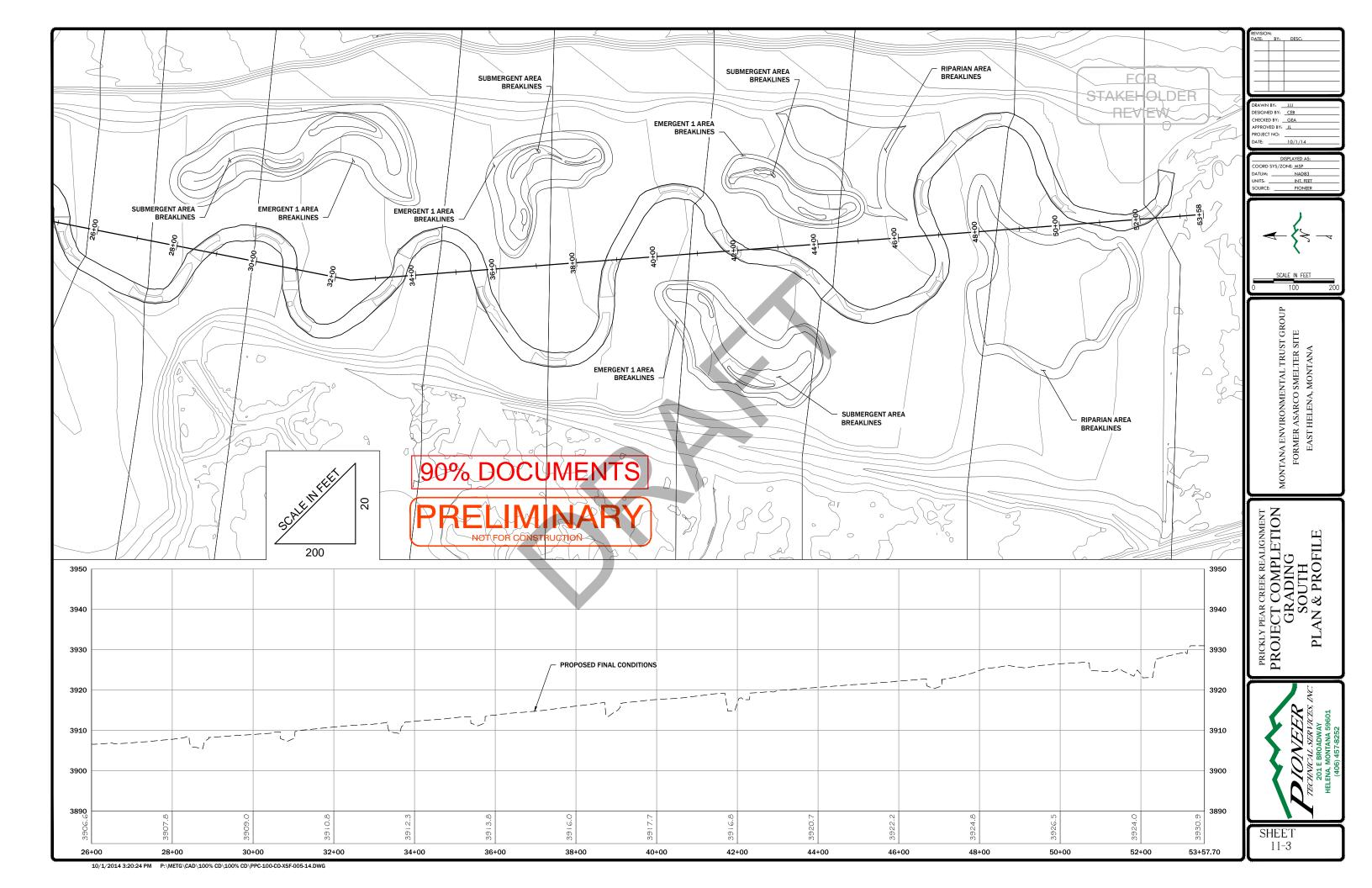












10/1/2014 10:23:30 AM P:\METG\CAD\100% CD\100% CD\PPC-100-CO-PLN-004-13.DWG

Prickly Pear Creek Technical Specifications List

STANDARD TECHNICAL SPECIFICATIONS FOR PRICKLY PEAR CREEK REALIGNMENT

DIVISION 1 – GENERAL REQUIREMENTS

SECTION 01041PROJECT COORDINATIONSECTION 01050FUEL PRICE ADJUSTMENTSECTION 01090SOURCES FOR REFERENCE PUBLICATIONSSECTION 01300SUBMITTAL PROCEDURESSECTION 01310ENVIRONMENTAL PROTECTIONSECTION 01320SAFETY, HEALTH, AND EMERGENCY RESPONSESECTION 01330WINTERIZATIONSECTION 01400CONTRACTOR QUALITY CONTROLSECTION 01500CONSTRUCTION FACILITIES AND TEMPORARY CONTROLSSECTION 01570TEMPORARY TRAFFIC CONTROLSECTION 01580TEMPORARY WATER SUPPLY*SECTION 01600EIELD SUBVEYING	SECTION 01010	GENERAL REQUIREMENTS
SECTION 01090SOURCES FOR REFERENCE PUBLICATIONSSECTION 01300SUBMITTAL PROCEDURESSECTION 01310ENVIRONMENTAL PROTECTIONSECTION 01320SAFETY, HEALTH, AND EMERGENCY RESPONSESECTION 01330WINTERIZATIONSECTION 01400CONTRACTOR QUALITY CONTROLSECTION 01500CONSTRUCTION FACILITIES AND TEMPORARY CONTROLSSECTION 01570TEMPORARY TRAFFIC CONTROLSECTION 01580TEMPORARY WATER SUPPLY*	SECTION 01041	PROJECT COORDINATION
SECTION 01300SUBMITTAL PROCEDURESSECTION 01310ENVIRONMENTAL PROTECTIONSECTION 01320SAFETY, HEALTH, AND EMERGENCY RESPONSESECTION 01330WINTERIZATIONSECTION 01400CONTRACTOR QUALITY CONTROLSECTION 01500CONSTRUCTION FACILITIES AND TEMPORARY CONTROLSSECTION 01570TEMPORARY TRAFFIC CONTROLSECTION 01580TEMPORARY WATER SUPPLY*	SECTION 01050	FUEL PRICE ADJUSTMENT
SECTION 01310ENVIRONMENTAL PROTECTIONSECTION 01320SAFETY, HEALTH, AND EMERGENCY RESPONSESECTION 01330WINTERIZATIONSECTION 01400CONTRACTOR QUALITY CONTROLSECTION 01500CONSTRUCTION FACILITIES AND TEMPORARY CONTROLSSECTION 01570TEMPORARY TRAFFIC CONTROLSECTION 01580TEMPORARY WATER SUPPLY*	SECTION 01090	SOURCES FOR REFERENCE PUBLICATIONS
SECTION 01320SAFETY, HEALTH, AND EMERGENCY RESPONSESECTION 01330WINTERIZATIONSECTION 01400CONTRACTOR QUALITY CONTROLSECTION 01500CONSTRUCTION FACILITIES AND TEMPORARY CONTROLSSECTION 01570TEMPORARY TRAFFIC CONTROLSECTION 01580TEMPORARY WATER SUPPLY*	SECTION 01300	SUBMITTAL PROCEDURES
SECTION 01330WINTERIZATIONSECTION 01400CONTRACTOR QUALITY CONTROLSECTION 01500CONSTRUCTION FACILITIES AND TEMPORARY CONTROLSSECTION 01570TEMPORARY TRAFFIC CONTROLSECTION 01580TEMPORARY WATER SUPPLY*	SECTION 01310	ENVIRONMENTAL PROTECTION
SECTION 01400CONTRACTOR QUALITY CONTROLSECTION 01500CONSTRUCTION FACILITIES AND TEMPORARY CONTROLSSECTION 01570TEMPORARY TRAFFIC CONTROLSECTION 01580TEMPORARY WATER SUPPLY*	SECTION 01320	SAFETY, HEALTH, AND EMERGENCY RESPONSE
SECTION 01500CONSTRUCTION FACILITIES AND TEMPORARY CONTROLSSECTION 01570TEMPORARY TRAFFIC CONTROLSECTION 01580TEMPORARY WATER SUPPLY*	SECTION 01330	WINTERIZATION
SECTION 01570TEMPORARY TRAFFIC CONTROLSECTION 01580TEMPORARY WATER SUPPLY*	SECTION 01400	CONTRACTOR QUALITY CONTROL
SECTION 01580 TEMPORARY WATER SUPPLY*	SECTION 01500	CONSTRUCTION FACILITIES AND TEMPORARY CONTROLS
	SECTION 01570	TEMPORARY TRAFFIC CONTROL
	SECTION 01580	TEMPORARY WATER SUPPLY*
	SECTION 01600	FIELD SURVEYING
SECTION 01700 CONTRACT CLOSEOUT	SECTION 01700	CONTRACT CLOSEOUT

DIVISION 2 – SITE WORK

SECTIONS 02100 - SITE PREPARATION

SECTION 02110	MOBILIZATION AND DEMOBILIZATION
SECTION 02120	CLEARING AND GRUBBING
SECTION 02130	ROAD MAINTENANCE AND DUST CONTROL
SECTION 02140	PROVIDE WATER
SECTION 02150	EROSION AND SEDIMENT CONTROL

SECTIONS 02200 - EARTHWORK

- SECTION 02210 EARTHWORK
- SECTION 02212 HAULING
- SECTION 02213 DEBRIS AND STRUCTURE DISPOSAL
- SECTION 02214 DIVERSION AND DEWATERING
- SECTION 02221 TRENCH EXCAVATION AND BACKFILL FOR PIPELINES AND APPURTENANT STRUCTURES*
- SECTION 02236 STOCKPILING OF MATERIALS

SECTIONS 02300 - RIPRAP AND GABIONS

SECTION 02300 RIPRAP

SECTIONS 02400 - CONSTRUCTION FABRICS

SECTION 02410 GEOTEXTILE

SECTIONS 02800 - FENCING AND GATING

SECTION 02810ACCESS CONTROLSSECTION 02820WIRE FENCES AND GATESSECTION 02822CHAIN LINK FENCES AND GATESSECTION 02824REMOVE AND REPLACE FENCE

SECTIONS 02900 - LANDSCAPING

SECTION 02900	GROWTH MEDIA (COVER SOIL)
SECTION 02901	ORGANIC AMENDMENT (COMPOST)
SECTION 02910	FERTILIZING AND SEEDING
SECTION 02911	MISCELLANEOUS PLANTING
SECTION 02912	WOODY MATERIAL MANAGEMENT
SECTION 02930	NEW STREAM CHANNEL CONSTRUCTION
SECTION 02940	LIME PRODUCTS

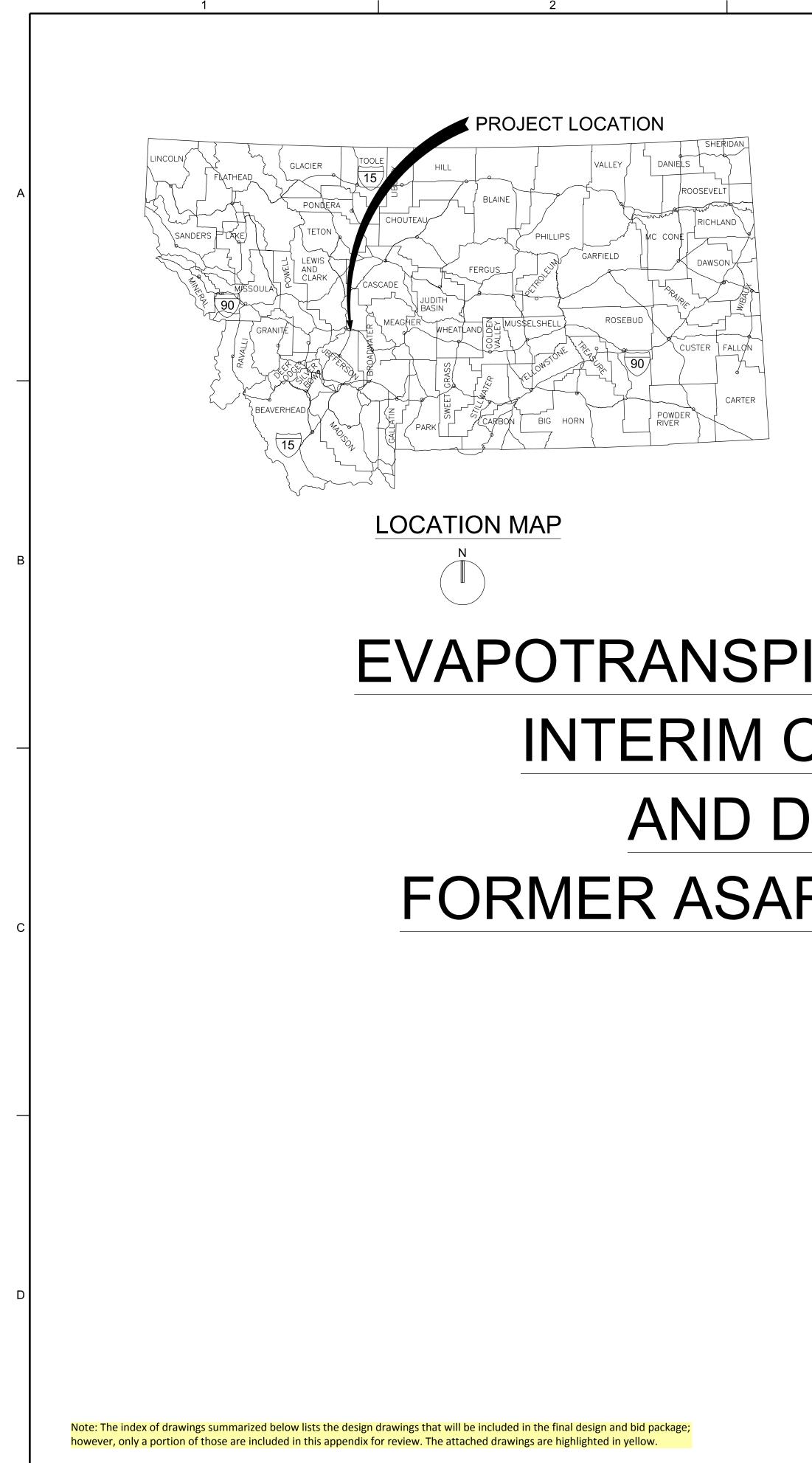
DIVISION 3 – CONCRETE

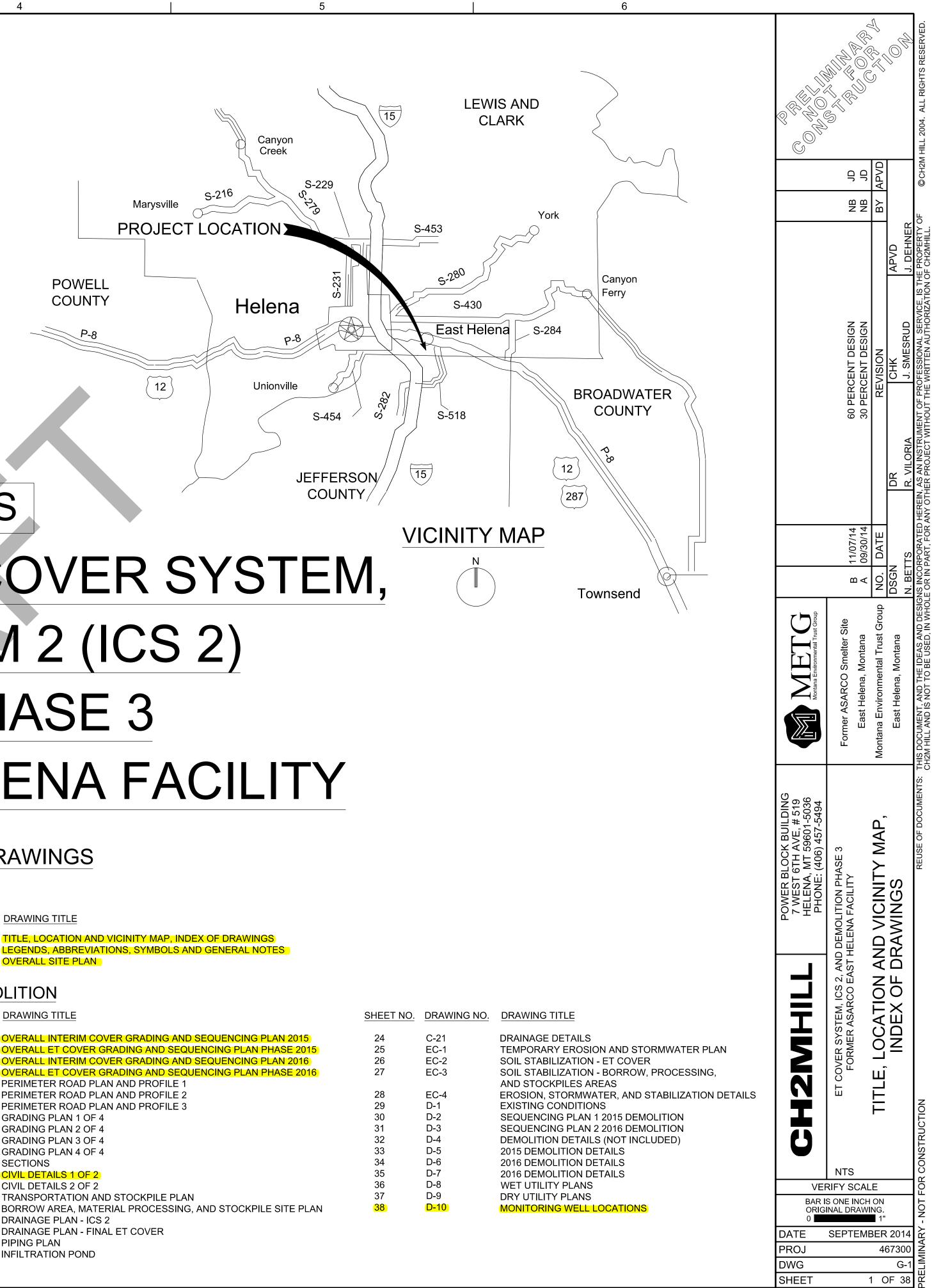
SECTIONS 03200 - CONCRETE REINFORCEMENT

SECTION 03210 REINFORCING STEEL* SECTION 03310 STRUCTURAL CONCRETE*

Notes:

*Refer to the Montana Public Works Standard Specification, most recent edition.


Prickly Pear Creek List of Available Documents


List of Available Documents used in Prickly Pear Creek Realignment and Wetland Design

- Joint Application No. 2 Binder
 - Application Form
 - Compensatory Mitigation Report
 - Design Documents (see List Below)
 - Design Basis Documents on CD (see List Below)
- Design Documents (Included in Joint Application No. 2, Provided in Hard Copy to Stakeholders)
 - Special Provisions
 - Technical Specifications
 - Drawings
- Design Basis Documents (Provided on CD with Joint Application No. 2 and to all Stakeholders with Design Documents)
 - Baseline Reports
 - ° Initial Wetlands Delineation Report
 - ° Baseline Stream Assessment Report
 - ° Photos, Forms, and Assessments
 - ° Wildlife Species/T&E Documentation
 - Conceptual Design Report
 - ° Goals and Objectives
 - ° Basic Design Criteria
 - ° Sediment Continuity Analysis
 - ^o Baseline Calculation Summaries (hydrology, hydraulics, sediment transport, etc.)
 - Additional Technical Memos
 - ° East Helena Geomorphic Assessment and Sediment Transport Analysis
 - ° Construction Sequencing Options
 - ° Temporary Bypass Use
 - ° Slag Pile Regrading Options
 - ° Plant Salvage
 - ° Materials Balance
 - ° Geotechnical/Soils Investigations
 - Even More Calculation Summaries
 - ° Basic Design Calculations Scour, Riprap Sizing, Filter, Fish Passage, etc.
 - ° Temporary Bypass Inlet Design Calculations
 - ° Updated Sediment Continuity Analysis
 - ° Conditional Letter of Map Revision No. 2 Floodplain Modeling Technical Memorandum
 - Comments and Responses to Comments on 60 percent Design

Select Evapotranspiration Cover System, Interim Cover System 2, and Demolition Phase 3 Design Drawings

60% DRAWINGS

EVAPOTRANSPIRATION (ET) COVER SYSTEM, INTERIM COVER SYSTEM 2 (ICS 2) AND DEMOLITION PHASE 3 FORMER ASARCO EAST HELENA FACILITY

INDEX OF DRAWINGS

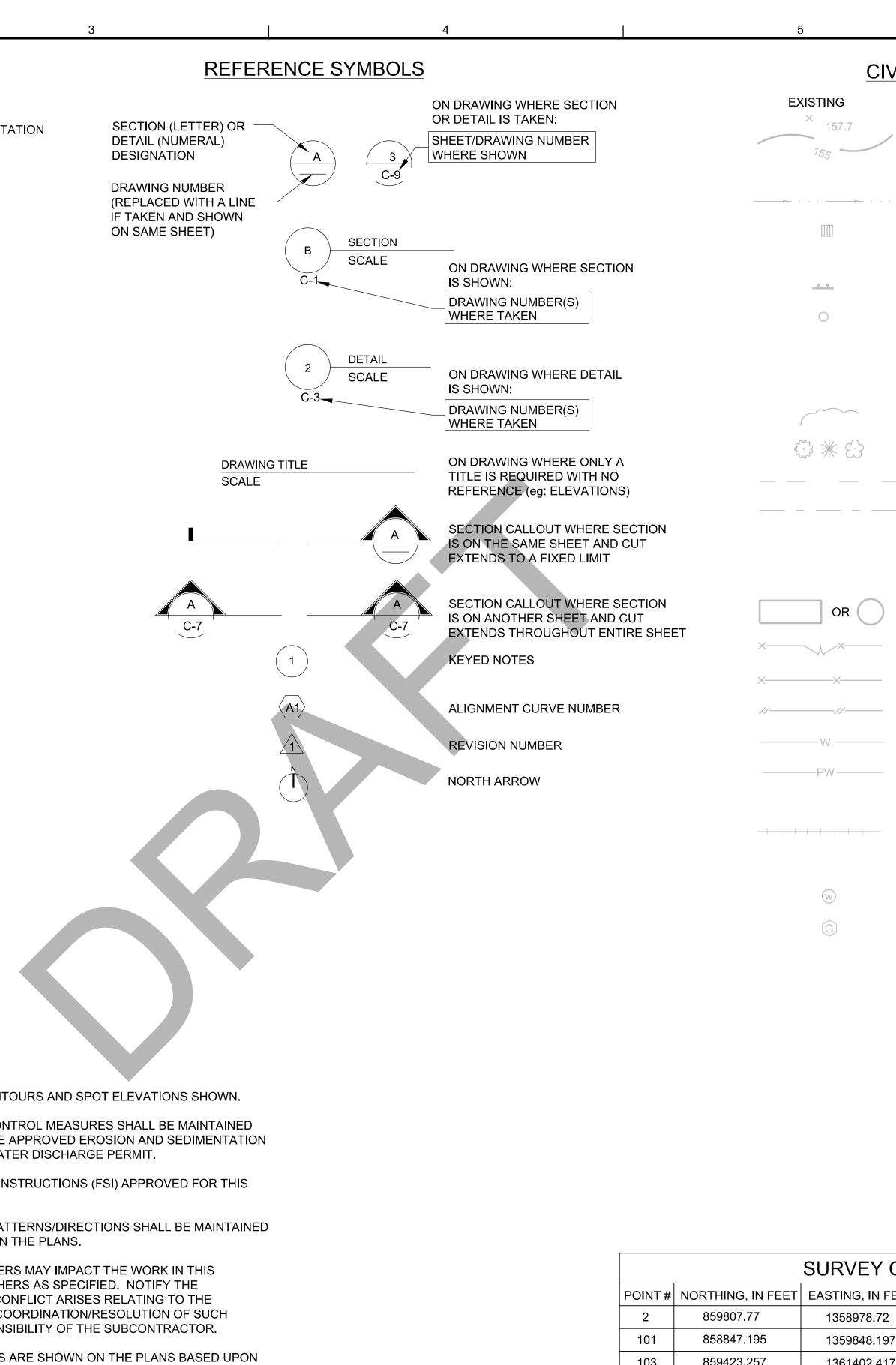
GENERAL

SHEET NO. DRAWING NO. DRAWING TITLE

<mark>G-1</mark>
<mark>G-2</mark>
C-3

TITLE, LOCATION AND VICINITY MAP, INDEX OF DRAWINGS LEGENDS, ABBREVIATIONS, SYMBOLS AND GENERAL NOTES

CIVIL AND DEMOLITION


SHEET NO. DRAWING NO. DRAWING TITLE

<mark>4</mark>	<mark>C-1</mark>	OVERALL INTERIM COVER GRADING AND SEQUENCING PLAN 2015
5	<mark>C-2</mark>	OVERALL ET COVER GRADING AND SEQUENCING PLAN PHASE 2015
6	C-3	OVERALL INTERIM COVER GRADING AND SEQUENCING PLAN 2016
7	<mark>C-4</mark>	OVERALL ET COVER GRADING AND SEQUENCING PLAN PHASE 2016
8	C-5	PERIMETER ROAD PLAN AND PROFILE 1
9	C-6	PERIMETER ROAD PLAN AND PROFILE 2
10	C-7	PERIMETER ROAD PLAN AND PROFILE 3
11	C8	GRADING PLAN 1 OF 4
12	C-9	GRADING PLAN 2 OF 4
13	C-10	GRADING PLAN 3 OF 4
14	C-11	GRADING PLAN 4 OF 4
15	C-12	SECTIONS
<mark>16</mark>	C-13	CIVIL DETAILS 1 OF 2
17	C-14	CIVIL DETAILS 2 OF 2
18	C-15	TRANSPORTATION AND STOCKPILE PLAN
19	C-16	BORROW AREA, MATERIAL PROCESSING, AND STOCKPILE SITE PLAN
20	C-17	DRAINAGE PLAN - ICS 2
21	C-18	DRAINAGE PLAN - FINAL ET COVER
22	C-19	PIPING PLAN
23	C-20	INFILTRATION POND

25 26 27	
28 29 30 31 32 33 34 35 36	
37	

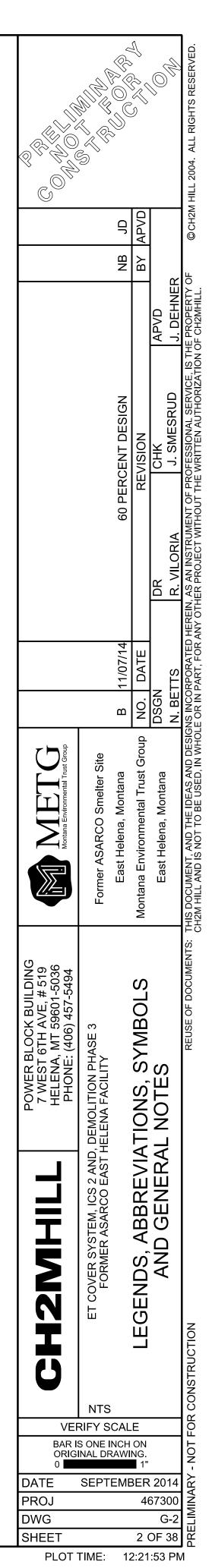
PLOT TIME: 1:59:24 PM

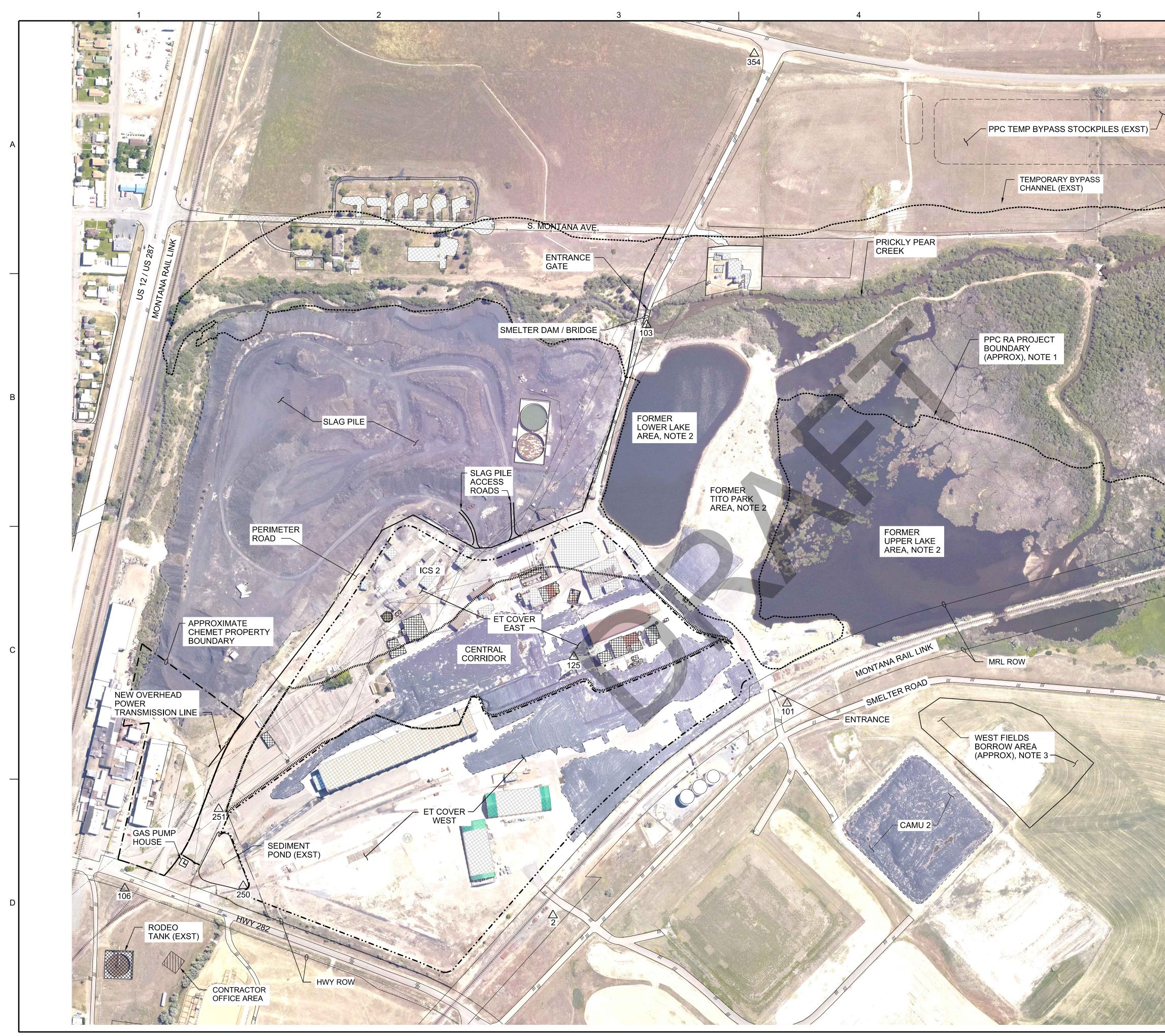
		1	2	
	ABBR	REVIATIONS		
	ADDL	ADDITIONAL	MATL	MATERIAL
	ADJ	ADJACENT	MAX	MAXIMUM
	APPROX		MDT	MONTANA DEPARTMENT OF TRANSPORTA
	APSD	ACID PLANT SEDIMENT DRYING	MFR	
	AS	ACTION SUBMITTAL	MIL MIN	⅓ ₀₀₀ OF 1 INCH MINIMUM
	BG	BELOW GRADE	MIN	MINIMUM MISCELLANEOUS
	BM	BEAM, BENCHMARK		
А	BOT	BOTTOM	N	
	BRG	BEARING	NA	
	CAMU	CORRECTIVE ACTION MANAGEM		NEUTRAL
	CDN	COMPOSITE DRAINAGE NET	NO.,#	NUMBER
	CIP		NOM	NOMINAL
	CL		N-S	NORTH - SOUTH
	CLSM	CONTROLLED LOW STRENGTH N CONCRETE		NOT TO SCALE
	CONC		OD	
	CONT COORD		OZ	
	COORD	COORDINATE CENTER	PCF	POUNDS PER CUBIC FOOT
	CTR	CENTERED	PI	POINT OF INTERSECTION
	CIRD	CUBIC	PL PL C	
			PLS PNL	PROFESSIONAL LAND SURVEYOR
	CY, CU Y		POC	
	DET	DETAIL		POINT OF CONTACT
	DIA	DIAMETER	PPC	PRICKLY PEAR CREEK
	DWG	DRAWING	PRI	PRIMARY
	E	EAST	PROP	PROPERTY
	EA	EACH	RDCR	REDUCER
	EL	ELEVATION	REF	REFER OR REFERENCE
	ELC	ELECTRICAL LOAD CENTER	PSI	POUNDS PER SQUARE INCH
	ESC	EROSION AND SEDIMENT CONTR		POINT
	EW		PVC	
В	EXC	EXCAVATION	REQD	REQUIRED
	EXST, EX		RPE	REINFORCED POLYETHYLENE
	EXT	EXTERIOR	R/W	RIGHT OF WAY
	FG	FINISH GRADE	SCHED	SCHEDULE
	FL FLEX	FLOW LINE FLEXIBLE	SEC SF	SECONDARY
	FLEA	FOOT OR FEET		SQUARE FEET
	FWD	FORWARD	SH SIM	SHEET SIMILAR
	G, GND	GROUND	SPEC, SPECS	
	GALV	GALVANIZED	SQ	SQUARE
	GM	GEOMEMBRANE	STD	STANDARD
	GPM	GALLONS PER MINUTE	SY	SQUARE YARDS
	GVL	GRAVEL	TECH	TECHNICAL
	HDS	HIGH DENSITY SLUDGE	TEMP	TEMPORARY, TEMPERATURE
	HORIZ	HORIZONTAL	ТНК	THICKNESS
	IAW	IN ACCORDANCE WITH	THRU	THROUGH
	ICS	INTERIM COVER SYSTEM	TPA	TITO PARK AREA
	IE	INVERT ELEVATION	TYP	TYPICAL
	IN	INCH(ES)	UL	UPPER LAKE
	INVT	INVERT	UON	UNLESS OTHERWISE NOTED
	IS	INFORMATION SUBMITTAL	UOSA	UPPER ORE STORAGE AREA
	L	ANGLE, LENGTH	UV	ULTRAVIOLET
	LF	LINEAR FEET	VERT	VERTICAL
С	LG	LONG	VVL W	
_	LGP	LOW GROUND PRESSURE	WTP	
	LL		W/	
	LOC LONG	LOCATION LONGITUDINAL		WITH
	LONG	LOW POINT	NOTES:	
			1. CONTACT C	ONTRACTOR FOR ABBREVIATIONS USED
	GENE	RAL NOTES:	BUT NOT SH	IOWN ON THIS DRAWING
		RCE OF TOPOGRAPHY FOR EXISTING GR /IER TITO PARK AREA, THE FORMER LOW	•	8. SLOPE UNIFORMLY BETWEEN CONTO
		T FIELDS BORROW AREA ARE BASED ON		9. EROSION AND SEDIMENTATION CONT
		DUCTED BY HELENA SAND AND GRAVEL		AND INSPECTED AS STATED IN THE A
	2014.	SOURCE OF TOPOGRAPHY FOR OTHER	RAREAS, IS AN AERIAL	PLAN APPROVED IN THE STORMWATE
		/EY CONDUCTED DJ&A, P.C. BETWEEN A		
		TING CONDITIONS MAY VARY FROM THO		10. COMPLY WITH THE FIELD SAFETY INS
		IS. VERIFY EXISTING CONDITIONS AND A		SITE AT ALL TIMES.
	AUU	ORDINGLY PRIOR TO BEGINNING CONST		11. EXISTING SITE DRAINAGE FLOW PATT
	2. EXIS	TING TOPOGRAPHY, STRUCTURES, AND	SITE FEATURES ARE	UNLESS OTHERWISE INDICATED ON 1
	SHO\	WN SCREENED AND/OR LIGHT-LINED. NE	W FINISH GRADE,	
	STRU	JCTURES, AND SITE FEATURES ARE SHC	WN HEAVY-LINED.	12. CONSTRUCTION ACTIVITY BY OTHER
	0			PACKAGE. COORDINATE WITH OTHE
		ZONTAL DATUM: NAD 83, MONTANA STA	TE PLANE COORDINATE	
	SYST	EM, INTERNATIONAL FEET.		PROGRESS OF THE WORK. FINAL CO
D	4 \/⊏₽٦	ICAL DATUM: N.A.V.D. 88, U.S. SURVEY I	FFT	CONFLICTS SHALL BE THE RESPONSI
ט				13. EXISTING FEATURES AND UTILITIES A
	5. MAIN	TAIN, RELOCATE, OR REPLACE EXISTING	SURVEY MONUMENTS,	INFORMATION AVAILABLE AT THE TIM
	CON	TROL POINTS, AND STAKES WHICH ARE I	DISTURBED OR	UNIDENTIFIED UTILITY OR SERVICE E
		ROYED. PERFORM THE WORK TO PROD		CONTRACTOR AND THE APPROPRIAT
		JRACY AS THE ORIGINAL MONUMENT(S)	IN A TIMELY MANNER, AND	
		HE SUBCONTRACTOR'S EXPENSE.		14. ACCESS TO THE GENERAL SITE, AND LIMITED TO THE LOCATIONS SHOWN
	6. PROV	/IDE TEMPORARY FENCING AS NECESSA	RY TO MAINTAIN SECURITY	ENVITED TO THE LOCATIONS SHOWN
		LL TIMES.		15. WATER FOR CONSTRUCTION ACTIVIT
	-7			SUBCONTRACTOR AT THEIR SOLE EX
	7. ELEV	ATIONS GIVEN ARE TO FINISH GRADE UI	NLESS OTHERWISE NOTED.	SHALL BE THE RESPONSIBILITY OF TH

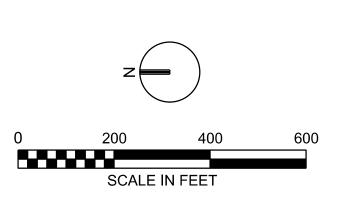
TIME THE PLANS WERE PREPARED. SHOULD E ELEMENTS BE ENCOUNTERED, NOTIFY THE NATE UTILITY OWNER IMMEDIATELY.

ND TO SPECIFIC WORK AREAS SHALL BE VN ON THE PLANS.

VITIES SHALL BE OBTAINED BY THE EXPENSE. ANY AND ALL PERMITS REQUIRED F THE SUBCONTRACTOR.

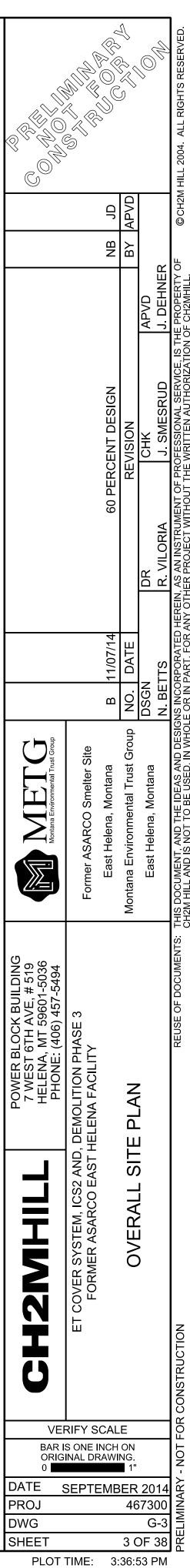

[
	SURVEY CONTROL POINTS					
POINT #	NORTHING, IN FEET	EASTING, IN FEET	ELEVATION, IN FEET	MONUMENT DESCRIPTION		
2	859807.77	1358978.72	3931.69	SET - AC		
101	858847.195	1359848.197	3935.396	ASARCO - BM1		
103	859423.257	1361402.417	3919.772	BRIDGE - STAFFNUT		
106	861564.695	1359088.903	3899.418	E-459 USGS		
125	859721.970	1360039.615	3913.60	FND - MAGNAIL		
250	861078.79	1359099.59	3911.8	SET - REBAR CAP		
251	861179.74	1359415.57	3907.15	SET - MAGNAIL		
354	858981.56	1362515.45	3923.47	FND 3/4 REBAR		
			· · · · · · · · · · · · · · · · · · ·			

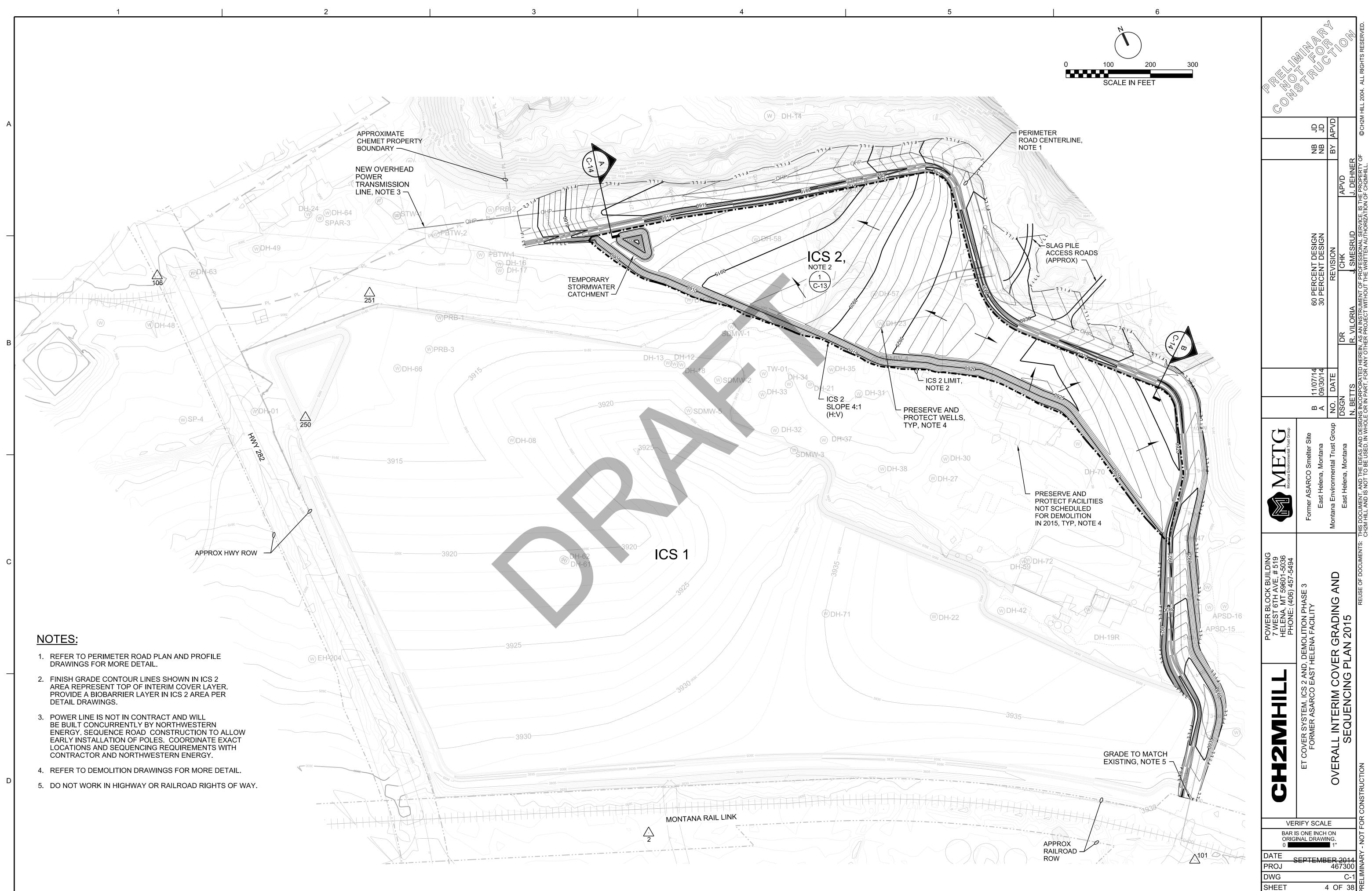

<u>CIVIL</u>	LEGEND
	THIS CONTRACT \otimes 158.5
	3:1
	CB OR CB
	D OR P
	° BM
	\bigtriangleup
	\bigcap
	from the former of the former
	· ·
\bigcirc	N 1000.00 E 1000.00
	×
	~~ ~
	xx
	////
	W
	PW
	Cu
	-+ + + + + + + +
	o c
	W
	G
	\sim
	(\bigotimes)

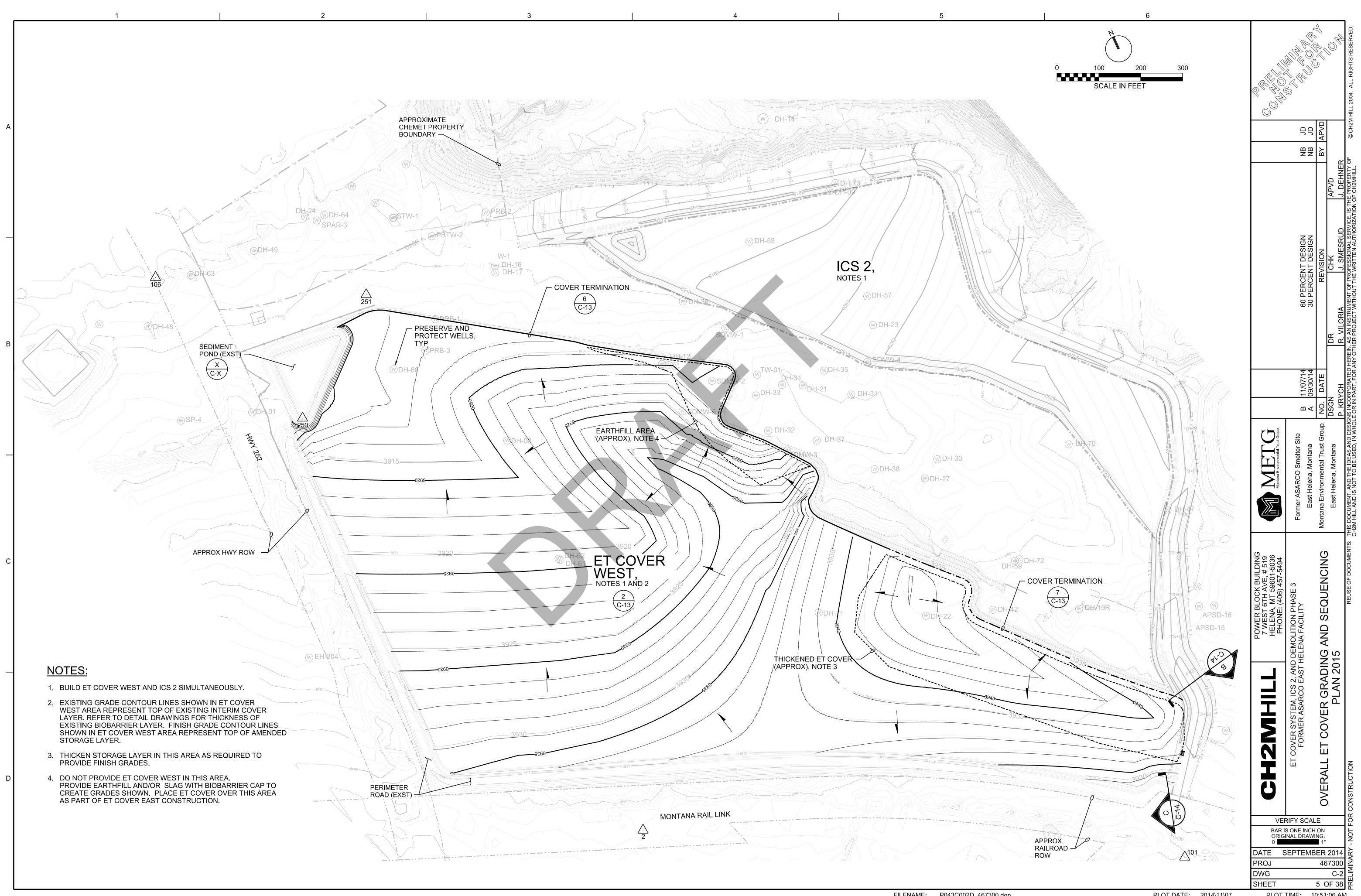

SPOT ELEVATION CONTOUR LINE EMBANKMENT AND SLOPE DRAINAGEWAY OR DITCH CATCH BASIN OR INLET TRENCH DRAIN SIGN MANHOLE D = STORM DRAIN P = PLANT**BENCH MARK** SURVEY CONTROL POINT OR POINT OF INTERSECTION **BRUSH/TREE LINE** TREE PROPERTY LINE CENTER LINE, BUILDING, ROAD, ETC. STAGING OR WORK AREA LIMITS STRUCTURE, BUILDING OR FACILITY LOCATION POINT - COORDINATES STRUCTURE, BUILDING OR FACILITY DOUBLE SWING GATE CHAIN LINK FENCE SILT FENCE WATER LINE PLANT WATER (DRAINAGE) BURIED INSTRUMENT CABLE TRACK LINE JERSEY BARRIER GROUNDWATER MONITORING WELL STAFF GAUGE SPOT ELEVATION

GENERAL NOTE: 1. THIS IS A STANDARD LEGEND SHEET. THEREFORE, NOT ALL OF THE INFORMATION SHOWN MAY BE USED ON THIS PROJECT.

DEMOLISHED STRUCTURES

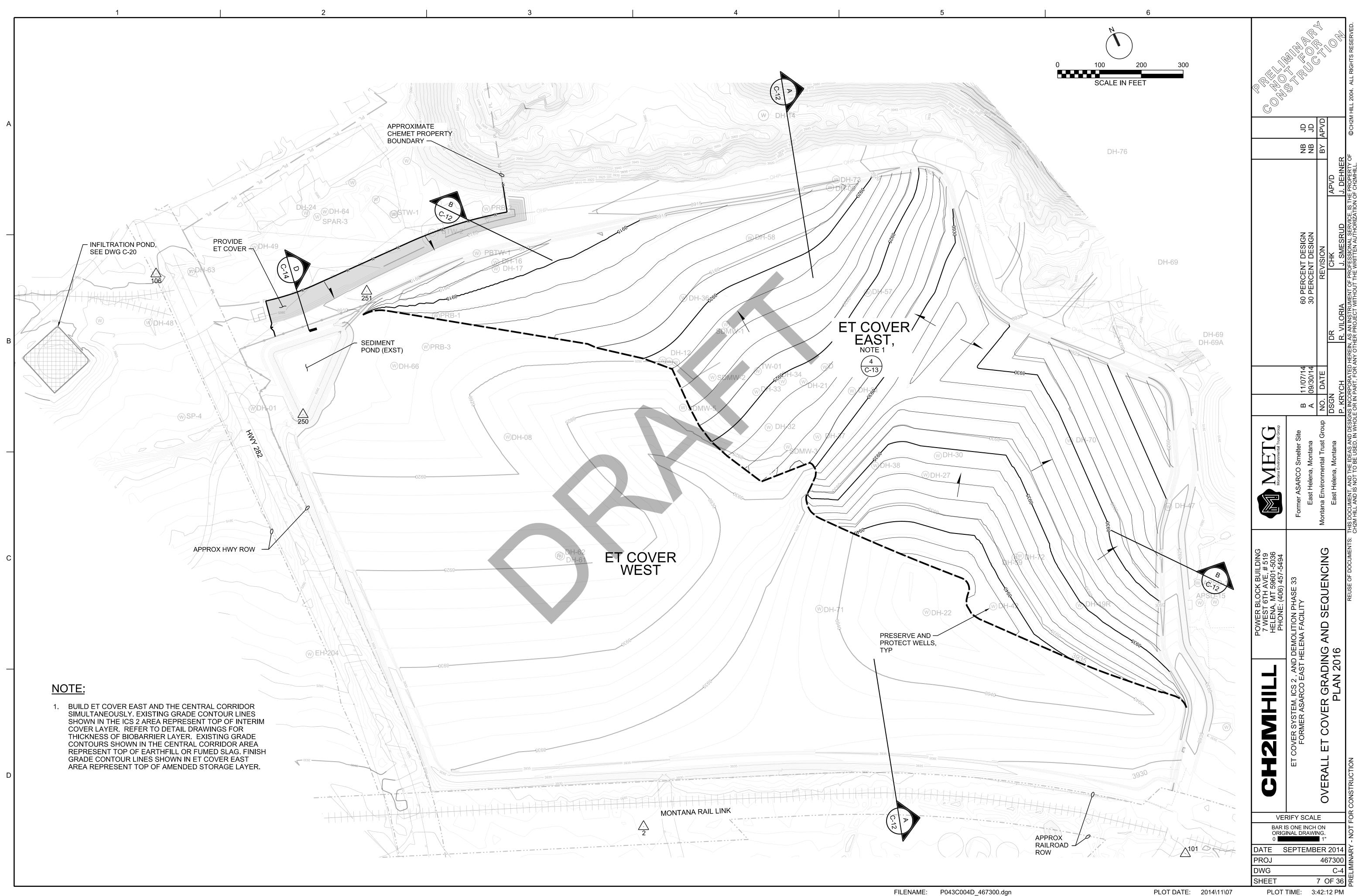


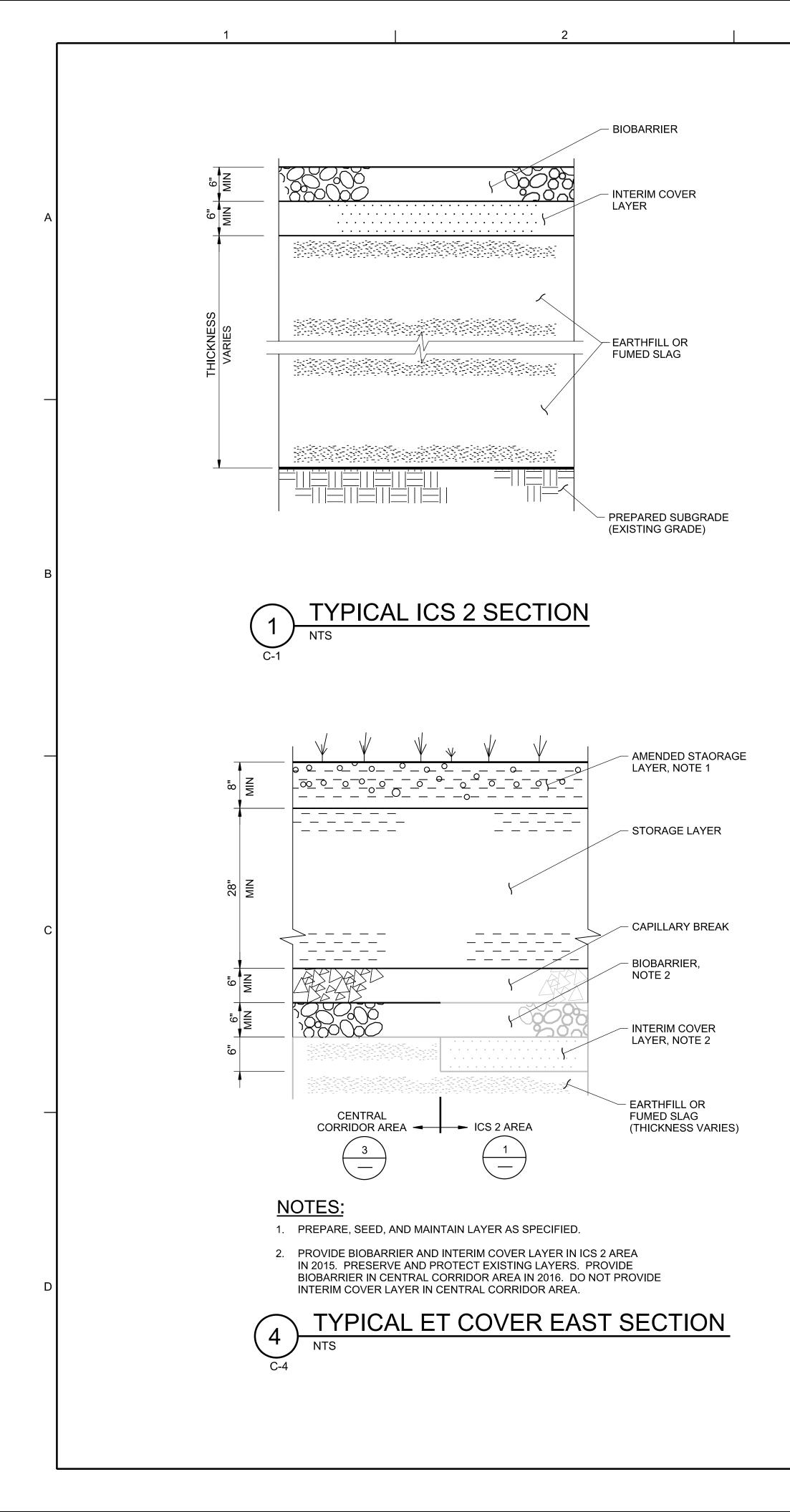


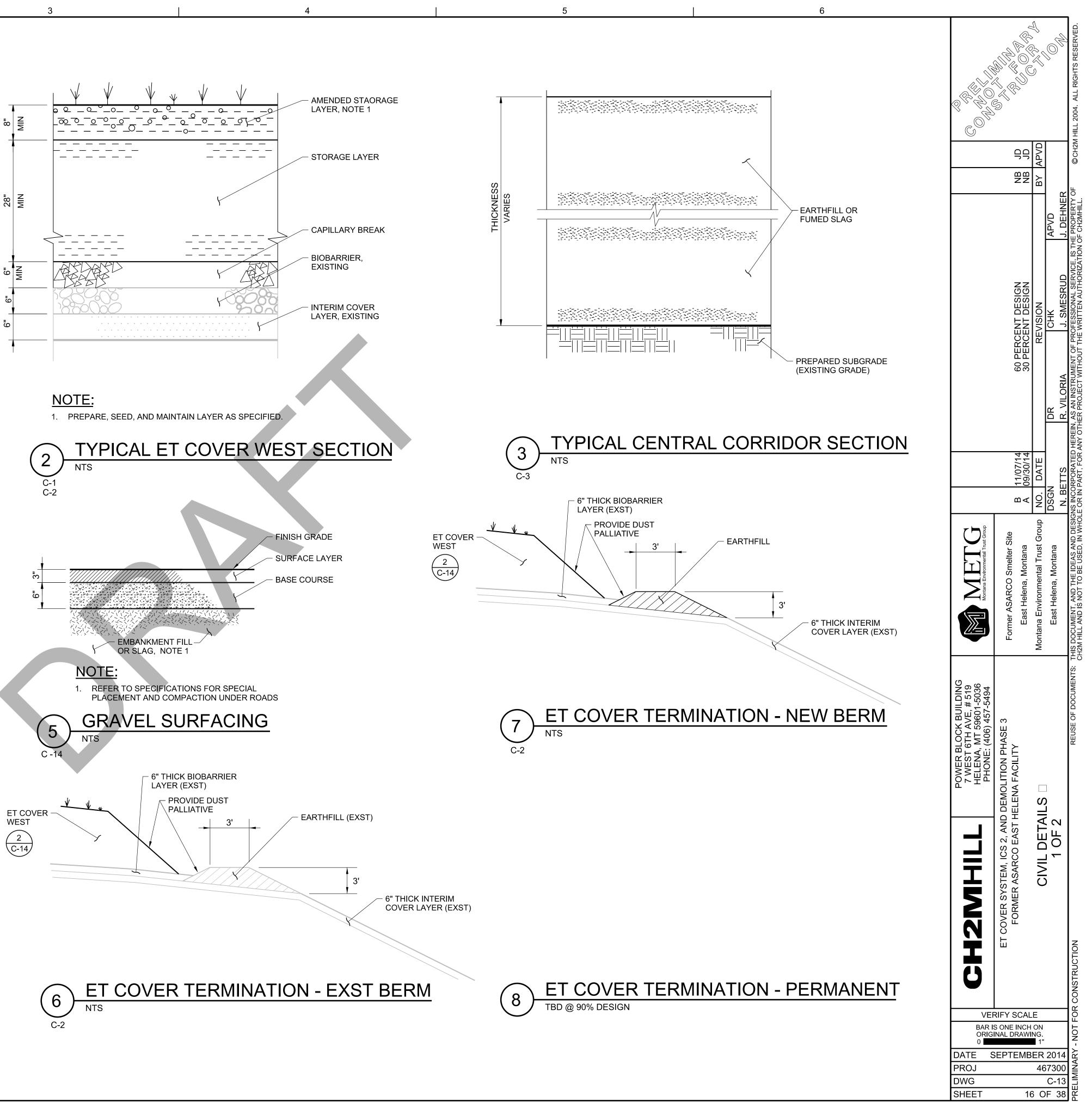

NOTES:

- 1. THE PPC REALIGNMENT (RA) PROJECT IS NOT INCLUDED IN THIS CONTRACT. COORDINATE WORK WITH THE PPC RA CONTRACTOR AS SPECIFIED.
- 2. LOWER LAKE, TITO PARK, AND UPPER LAKE WERE REMOVED IN 2014.
- 3. REFER TO BORROW DRAWINGS FOR MORE DETAIL.

PLOT TIME: 8:02:52 AM

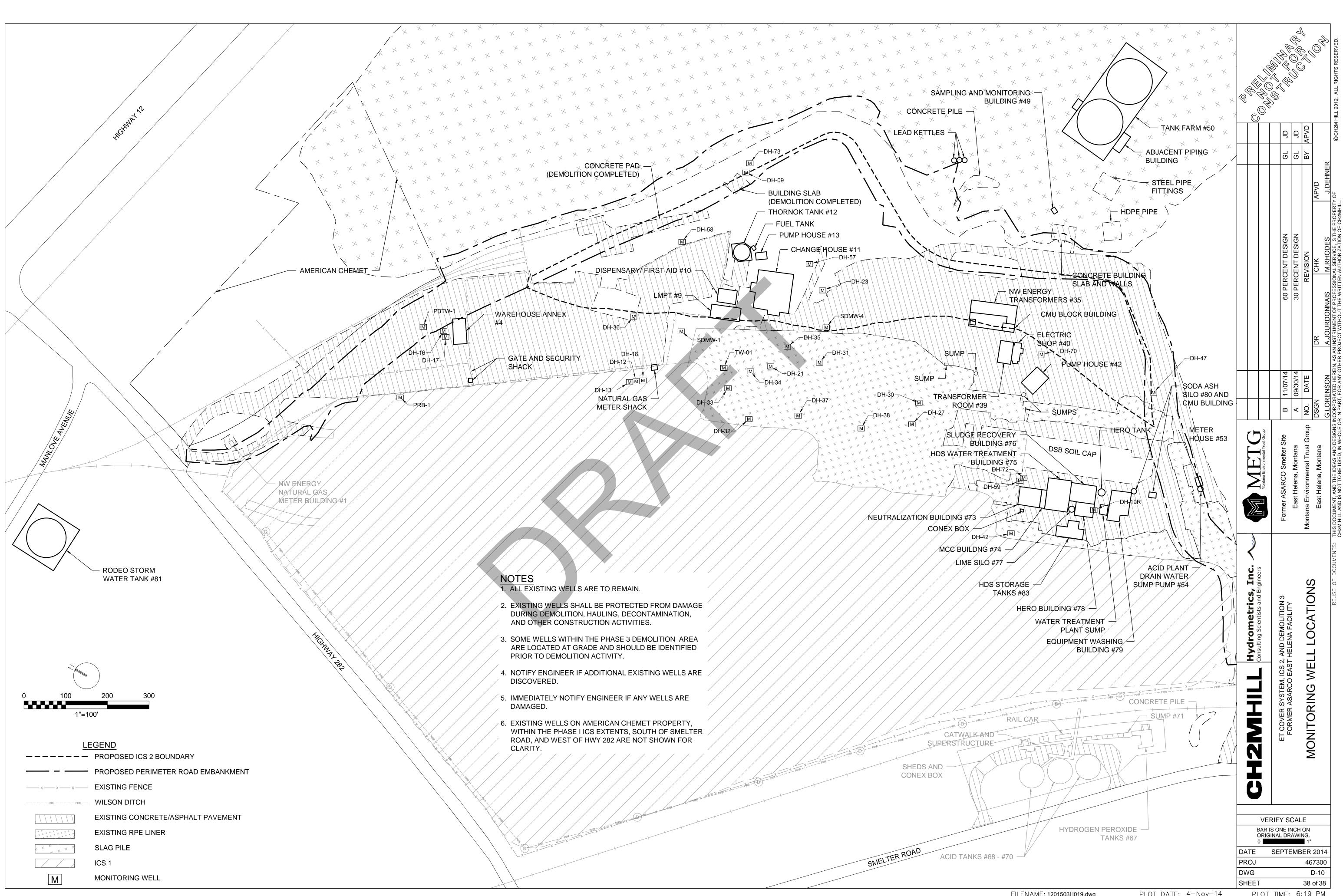



10:51:06 AM PLOT TIME:



11:43:39 AM PLOT TIME:

6 OF 38



PLOT TIME:

3:50:43 PM

PLOT DATE: 4-Nov-14

PLOT TIME: 6:19 PM

Evapotranspiration Cover System, Interim Cover System 2, and Demolition Phase 3 Technical Specifications List

MONTANA ENVIRONMENTAL TRUST GROUP (METG)

FORMER ASARCO EAST HELENA FACILITY

EAST HELENA, MONTANA

SPECIFICATIONS

for construction of

EVAPOTRANSPIRATION (ET) COVER SYSTEM,

INTERIM COVER SYSTEM 2 (ICS 2),

AND

DEMOLITION PHASE 3

**** 60 Percent

CH2M HILL

Helena, MT

November 7, 2014

©CH2M HILL 2014. All rights reserved.

This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of CH2M HILL and is not to be used in whole or part, for any other project without the written authorization of CH2M HILL.

TABLE OF CONTENTS

Pages 1

TECHNICAL SPECIFICATIONS

DIVISION 1-GENERAL REQUIREMENTS

	01 05 00	Special Conditions	1-	7
	01 11 00	Summary of Work		2
	01 29 00	Payment Procedures		8
	01 31 13	Project Coordination		5
	01 31 19	Project Meetings		3
	01 32 00	Construction Progress Documentation		6
		Supplement:		
		Example Three Week Look-Ahead Schedule		
	01 33 00	Submittal Procedures	1-	8
		Supplement:		
		Transmittal of Contractor's Submittal		
	01 45 16.13	Subcontractor Quality Control	1-	10
	01 50 00	Temporary Facilities and Controls	1-	12
	01 57 13	Temporary Erosion and Sediment Control	1-	7
	01 77 00	Closeout Procedures	1-	4
		XISTING CONDITIONS		
	02 41 00	Demolition	1-	7
	DIVISIONS 3 TH DIVISION 31—E	ROUGH 30 (NOT USED) ARTHWORK		
	31 10 00	Site Clearing		3
	31 23 13	Subgrade Preparation		3
	31 23 16	Excavation		6
	31 23 16.01	Borrow Excavation	1-	2
	31 23 23	Fill and Backfill		8
	31 23 23.15	Trench Backfill	 	-8
	31 32 00	Soil Stabilization		7
	31 32 19.16	Geotextile	1-	7
	31 37 00	Riprap	1-	2
DUUG				
DIVIS		OR IMPROVEMENTS	1	~
	32 92 00	Turfs and Grasses	1-	2

PW/WBG/467300/43 November 7, 2014 ©COPYRIGHT 2014 CH2M HILL
 TABLE OF CONTENTS

 00 01 10 - 1

MONTANA ENVIRONMENTAL TRUST GROUP, FORMER ASARCO EAST HELENA FACILITY ET COVER,ICS 2, AND DEMOLITION PHASE 3

Pages

DIVISION 33—UTILITIES

33 05 01	Conveyance Piping—General1-	4
33 05 13	Manholes1-	9
33 41 01	Storm Drain, Sanitary Sewer, and Drainage Piping 1-	9
	Supplement:	
	Reinforced Concrete Data Sheet	

DIVISIONS 34 THROUGH 49 (NOT USED)

DRAWINGS (BOUND SEPARATELY)

END OF SECTION

TABLE OF CONTENTS00 01 10 - 2

PW/WBG/467300/43 November 7, 2014 ©COPYRIGHT 2014 CH2M HILL

Technical Memorandum: Evapotranspiration Cover System Design, Construction, Operation, and Maintenance Criteria TECHNICAL MEMORANDUM

Evapotranspirative Cover System Design, Construction, Operation, and Maintenance Criteria, Former ASARCO Smelter Site, East Helena, Montana

PREPARED FOR:	Lauri Gorton/Custodial Trust			
PREPARED BY:	Nathan Betts/CH2M HILL			
	Bob Martin/CH2M HILL			
	Jason Smesrud/CH2M HILL			
	Scott Dethloff/CH2M HILL			
REVIEWED BY:	Bill Albright/Desert Research Institute Bob Anderson/Hydrometrics			
DATE:	February 17, 2014			
PROJECT NUMBER:				

Introduction

This technical memorandum (TM) summarizes the criteria and approach that will be used to guide the different phases for implementing the Evapotranspirative (ET) Cover System Interim Measure (IM) planned for the former ASARCO smelter in East Helena, Montana. The ET Cover System IM is one of three inter-related, inter-dependent IMs proposed in the Interim Measures Work Plan 2012, and subsequently conceptually approved by the US Environmental Protection Agency (USEPA) on August 28, 2012. The IMs are being implemented by the Montana Environmental Trust Group, LLC, Trustee of the Montana Environmental Custodial Trust (the Custodial Trust) as part of the Custodial Trust's Resource Conservation and Recovery Act (RCRA) obligations pursuant to the First Modification to the 1998 Consent Decree (Dreher et al., 2012) for the East Helena Facility (Facility).

The primary purpose of the IMs is to reduce the migration of contaminants in groundwater from the former Smelter Site in order to protect public health and the environment. The ET Cover System is proposed to further reduce the potential for site-related soil contaminants leaching to groundwater by eliminating or substantially reducing the amount of precipitation that infiltrates through contaminated materials. The ET Cover System will also lessen human and ecological receptor exposure to inorganic-contaminated soil.

The ET Cover System design has been developed to an approximately 15 percent level of completion to outline the preliminary grading, material balances, and orientation of the site-wide layout. The design will be developed to a 30 percent level of completion to further define the grading and site drainage necessary to interface efficiently and effectively with the Interim Cover System Phase 1 design. However, prior to moving further forward in the design phase for the ET cover layering system (material types and thicknesses for the cover itself), it is necessary to establish the criteria that can be used to direct the completion of the design, construction, and long-term monitoring. The following sections discuss the proposed criteria for each phase of ET cover implementation. Those phases are engineering design, construction, and monitoring and maintenance.

Remedy Performance Criteria

In accordance with USEPA's RCRA regulations and guidance, the Custodial Trust is proposing the following remedy performance criteria in the draft Corrective Measures Study (CMS) Work Plan, currently being updated for re-submittal in first quarter 2014. These performance standards will be considered the primary criteria for use in remedy evaluation, and are defined for the purposes of the East Helena Facility as follows:

- 1. Protection of human health and the environment
 - a. Human and ecological receptors—No direct contact (dermal, inhalation or ingestion) with environmental media having concentrations of COPCs exceeding relevant risk-based standards (see Media Cleanup Objectives below).
 - b. Protection of the environment will appropriately consider the surrounding ecological setting during remedy alternative evaluation.
 - c. Surface water—Prevent groundwater from discharging to surface water at concentrations that would cause the surface water to exceed Montana State Surface Water Standards and/or at concentrations that would degrade surface water quality beyond existing upstream water quality.
- 2. Source Control
 - a. Soils
 - i. Prevent migration of contaminated surface soils via wind-blown deposition or surface water runoff.
 - ii. Reduce—to the extent practicable—the potential for groundwater to contact soils with COPC concentrations exceeding relevant protection to groundwater standards through the following activities
 - 1) Reducing and/or eliminating to the extent practicable infiltration of stormwater into and though areas of contaminated soils and sediments
 - 2) Reducing to the extent practicable the amount of contaminated soil in contact with groundwater
 - 3) Reducing to the extent practicable COPC concentrations or mass where such removal will yield immediate reductions in contaminant loading to groundwater.
 - b. Slag
 - i. Reduce—to the extent practicable—the potential for groundwater to contact slag through removal and recovery of recyclable slag.
 - 1) Reducing infiltration of stormwater
 - 2) Reducing contact with groundwater
- 3. Media Cleanup Objectives
 - a. Soil
 - i. Surface (0 to 2 feet below the ground surface [bgs])
 - Soil cleanup levels based on protection of human health and the environment for current and/or future new land uses (as shown in Table 2-2). Note that if numeric standards cannot be achieved, engineering and or institutional controls will be implemented to interrupt pathways for exposure and to maintain protective conditions.
 - ii. At depth (>2 feet bgs)
 - 1) Numeric standards based on protection of groundwater (as shown in Table 2-2, established regional background levels, <u>or</u>
 - 2) Non-numeric/concentration objective(s) based on impracticability associated with addressing large source mass (i.e., reduce toxicity, mobility, or ability of groundwater to come into contact with, leachable contaminant mass).
 - b. Groundwater

- i. Return usable groundwater to maximum beneficial uses wherever practicable, within a time that is reasonable considering all property-specific conditions.
- ii. Reduce COPC concentrations in groundwater within the operating facility boundary such that the Montana Numeric Water Quality Standards (as defined in Circular DEQ-7, and hereafter referred to as DEQ-7) are met at the points of compliance established by USEPA.
- iii. To the extent practicable maintain stability and continue attenuation of offsite (i.e., beyond the operating facility boundary) plumes such that COPC concentrations can be expected to meet DEQ-7 standards within a reasonable time.
- iv. During the timeframe when attainment of the DEQ-7 standards has not been achieved, minimize further migration of the plume, prevent exposure to the contaminated groundwater, and evaluate further risk reduction approaches. To the extent practical, control or eliminate other surface water and subsurface sources of contamination to groundwater within control of the Custodial Trust.
- c. Surface Water—Meet DEQ-7 and other applicable surface water quality standards for surface water bodies contaminated by ASARCO's historical activities, including present migration of existing contamination.
- d. Sediment—USEPA Region III's Biological Technical Assistance Group (BTAG) has developed values to be used for the evaluation of sampling data at Superfund sites. Referred to as the Region III BTAG Screening Benchmarks, they represent an appropriate set of screening criteria to evaluate ecological risk in freshwater sediment for the CMS properties (http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/fwsed/screenbench.htm).

The ET Cover System is a source control measure and is being implemented as an IM, with the intention that it will become a part of the final remedy for the Facility. The remedy performance standards form the primary objectives shown below, from which the design criteria have been derived.

Engineering Design Phase

The overarching goal of the engineering design phase is to design a cover system that supports the overall site-wide remedy. The objectives, criteria, and demonstrations that will be used to design the ET cover are shown below in Table 1. The design objectives listed in the first column correspond directly to the remedy performance criteria to provide assurance that the design will support the overall site-wide final remedy. The design criteria listed in the second column are the standards to which the cover will be designed. The criteria are divided into groups to show which design objectives they support. The demonstrations listed in the third column will be used to show that the completed design meets the design criteria. The design deliverables will include engineered drawings and specifications.

The ET cover system will be designed in accordance with methods that have been successfully used to design ET cover systems under similar site conditions, including those in Helena, Montana. The thickness, gradation, and other characteristics of the ET cover soil layers will be selected to optimally and efficiently reduce the predicted volume of percolation. This selection will be based upon a water balance analysis, site-specific hydraulic modeling, a borrow source investigation, the expected vegetation community, and data gathered from nearby ET covers, test plots, and lysimeters. Developing an optimized storage layer thickness will be based on conservative soil characteristics and predicted percolation ranges from modeling, and not a predetermined percolation value. The performance will be based on the level of conservancy and extra storage capacity provided by the design, quality assurance and quality control conducted and documented during construction, and operational observations on cover maintenance. The effect of the predicted percolation, but will be addressed as part of a separate analysis performed under the groundwater component of the Corrective Measures Study.

TABLE 1 Engineering Design Criteria ET Cover System. East Helena Facility

Design Objective	Design Criteria	Demonstration
1. Protect human health and the environment.	1a. The cover system will provide a physical separation between the contaminated soil and ground surface.	1a. The cover system will have a specified minimum thickness that will encompass the former smelter site with sufficient slope and drainage to provide for surface water runoff.
	1b. The cover system will inhibit bioturbation and contact with animals.	1b. The cover system design will have a burrowing animal barrier layer with a specified amount of cobble-sized rocks and a minimum thickness.
	1c. The cover system footprint will accommodate existing site access controls including fencing, signs, and gates.	1c. The cover system design will utilize existing site-security features and modify them as necessary to encircle the cover footprint.
2. Control potential sources of contamination migration.	2a. The cover system will resist wind erosion.	2a. The combination of soil and vegetation will resist wind erosion. The design will include vegetation specifications based on similar ET covers used in Montana and other similar climates. Temporary erosion control measures will be provided during the establishment of permanent cover vegetation.
	2b. The cover system will resist water erosion.	2b. The combination of soil, vegetation, slopes, and drainage features will resist water erosion. The design will include vegetation specification based on similar ET covers used in Montana and other similar climates. Drainage features will be armored as necessary along flow concentration areas (e.g., ditches and channels). Temporary erosion control measures will be provided during the establishment of permanent cover vegetation.
	2c. The cover will not be subject to inundation from flooding.	2c. The cover will be outside the 100-year floodplain of Prickly Pear Creek.
	2d. The cover system thickness, soil gradation, soil-moisture holding characteristics, and vegetation community will store infiltrating precipitation, reduce percolation through contaminated soil, and reduce contact with groundwater.	2d. Hydrologic modeling will be performed with site-specific climate data, soil characteristics, and design vegetation conditions to estimate anticipated percolation rates for the cover system. The design will also be compared to other ET cover systems in Montana and in similar climates in the western USA.
 Meet media cleanup objectives for soil. 	3a. The cover system will be comprised of soils with contaminant levels that are below cleanup levels for shallow surface soil (<2 feet bgs).	3a. The design will specify frequencies for field sampling and laboratory testing and minimum standards for compliance.
	3b. The cover system will be constructed with a slope, thickness, gradation, and moisture holding capacity that provides for infiltration storage and percolation reduction; reducing the contribution of COPC to groundwater and attenuation of groundwater plumes.	3b. The design will specify frequencies for field and laboratory testing, construction observation, inspection, and minimum standards for compliance; including cover layer thickness, gradation, placement, density, and surface grades.
4. Meet media cleanup objectives for surface	4a. The cover system surface will be designed to manage and control stormwater runoff.	4a. The cover surface will be sloped to provide positive drainage and reduce surface water collection that could drive infiltration. Surface

Design Objective	Design Criteria	Demonstration
water (i.e. DEQ-7 standards).		water runoff will be discharged to the perimete drainage system without coming into contact with sources of contamination. Cover grading will divert stormwater run-on around the cover.
	4b. Ditches, swales, and other drainage features will be designed to accommodate stormwater runoff and limit erosion.	4b. Features will be sloped to provide positive drainage and convey the flow from a specified design storm (e.g., 100-year 24-hour precipitation event). Ditches and other stormwater management structures may be lined to further reduce potential contact with contaminated soil.

TABLE 1 Engineering Design Criteria ET Cover System, East Helena Facility

Construction Phase

The overarching goal of the construction phase is to provide an ET cover system that meets the design requirements listed previously in Table 1. The objectives, criteria, and demonstrations that will be used to construct the cover system are shown below in Table 2. The construction objectives listed in the first column correspond directly to important design elements to provide assurance that construction activities are aligned with the cover design. The construction criteria listed in the second column are the procedures that will be used to construct the cover. The criteria are divided into groups to show which construction objectives they support. The quantifiable standards for each construction criterion will be determined during the engineering design phase and the ET cover system will be constructed and quality controlled in accordance with methods that have been successfully used to construct similar ET covers. The demonstrations listed in the third column will be used to show that the construction meets the construction criteria. The frequency and procedures for each demonstration will be developed during engineering design.

TABLE 2 Construction Criteria

ET Cover System, East Helena Facility

Construction Objective	Construction Criteria	Demonstration
1. Implement construction quality management system.	1a. Construction subcontractor will develop and implement a contractor quality control plan.	1a. Plan will be reviewed and approved by the construction manager.
	1b. Construction subcontractor will provide the services of an independent material testing firm to conduct field and laboratory testing.	1b. The firm will be certified to conduct testing by nationally recognized associations.
	1c. Construction subcontractor will provide services of a land surveyor to conduct ground surveys.	1c. The surveyor will be licensed to conduct surveys in the State of Montana.
2. Provide soil layers and grades that meet design requirements.	2a. Construction subcontractor will test/measure the properties and thicknesses of the soil layers. Properties may include gradation, moisture content, relative compaction, agronomic properties (for vegetation layer), and chemical properties.	2a. The testing firm will certify test results and the surveyor will stamp survey deliverables.

TABLE 2 Construction Criteria FT Cover System, Fast Helena Facility

Construction Objective	Construction Criteria	Demonstration
	2b. Owner will provide independent verification of construction quality control.	2b. Independent testing results and reporting conducted by Owner.
3. Provide a stand of vegetation that meets design requirements.	 Construction subcontractor will maintain or enhance the vegetation until a satisfactory stand is established. 	3. Construction subcontractor warranty or guarantee the vegetation.
4. Temporarily stabilize the cover surface to manage stormwater and limit erosion before vegetation has been established.	 Construction subcontractor will provide temporary stormwater, erosion, and sediment controls during and at completion of construction. 	 Cover surfaces will be visually inspected for signs of erosion or ponding. Control measures will be visually inspected for proper installation and adequate coverage.

Monitoring and Maintenance Phase

The ET cover system will provide long-term performance if constructed to meet design requirements. As with any system, however, periodic monitoring and maintenance will be required to allow the cover system to perform as intended over time. The ET cover system will be monitored and maintained in accordance with methods that have been successfully used on similar ET cover projects as well as conventional geosynthetic cover systems. Monitoring and maintenance will be based on visual observations of the cover condition. If monitoring observations identify conditions that could potentially result in a lower performance (e.g., vegetation failure or overly-flat slopes due to settlement), then the condition would be addressed as part of ongoing maintenance. The criteria listed below in Table 3 will be used to monitor and maintain the ET cover system. The objectives and criteria correspond to key design elements.

The monitoring program focuses on visual observations because that is the best way to verify that the design requirements are being maintained over the long term. For example, checking that the system's storage capacity is being maintained is best done by looking for changes in the cover thickness due to erosion, settlement, and other actions. Similarly, checking that the system's ET capacity is being maintained is best done by observing the vegetation community.

TABLE 3Monitoring and Maintenance CriteriaET Cover System, Former ASARCO Smelter Site

Monitoring and Maintenance Objective	Monitoring and Maintenance Criteria	Demonstration
1. Conduct regular monitoring to identify required maintenance.	1. Develop and follow a monitoring and maintenance plan.	1. Plan will contain the elements outlined in this table.
2. Monitor the vegetation stand.	Maintain a stand of vegetation that meets requirements.	2. Visual inspection to check for signs of failing vegetation.
3. Monitor the cover soil surface and drainage systems.	3. Maintain a soil surface the resists erosion and promotes stormwater runoff.	 Visual inspection for signs or erosion, settlement, changes in surface water flow, or ponding water.

Summary

The ET cover will be designed to meet the remedy performance criteria established in the draft CMS Work Plan and will consider existing performance information from existing ET Cover systems in the region to establish section properties. Technical evaluations to be conducted during final design will focus on identification of materials with the necessary physical properties. Construction documents will specify the materials and methods necessary to implement the design. Performance monitoring of the ET Cover system will be integrated into the overall groundwater monitoring plan for the East Helena Facility, to demonstrate that the cover is meeting the performance criteria and to assess the short- and long-term benefits to groundwater.

Appendix B Technical Memorandum: Evapotranspiration Cover System Design for the East Helena Former ASARCO Smelter Site

Evapotranspiration Cover System Design for the East Helena Former ASARCO Smelter Site

PREPARED FOR:	Jay Dehner/CH2M HILL Nathan Betts/CH2M HILL
PREPARED BY:	Robert Martin/CH2M HILL Bill Albright/DRI Craig Sauer/CH2M HILL
REVIEWED BY:	Jason Smesrud/CH2M HILL Dan Dolmar/CH2M HILL Bob Anderson/Hydrometrics, Inc.
DATE:	December 8, 2014

1.0 Introduction

An evaluation was conducted to support the design of a sitewide evapotranspiration (ET) cover system proposed for use at the former ASARCO smelter site (former Smelter site) in East Helena, Montana. This technical memorandum (TM) summarizes the evaluation results. The ET Cover System interim measure (IM) is designed in accordance with the *Former ASARCO East Helena Facility Interim Measures Work Plan– Conceptual Overview of Proposed Interim Measures and Details of 2012 Activities* (CH2M HILL, 2012).

A review of case studies was conducted to consider the applicability of the site for an ET cover system. The case studies included existing ET cover systems implemented in Montana under similar climatologic conditions, conclusions from the Alternative Cover Assessment Project (ACAP) Phase I report by the Desert Research Institute (Albright et al., 2002), and USEPA Fact Sheet on ET Cover Systems for Waste Containment (U.S. Environmental Protection Agency [USEPA], 2011). Case studies were reviewed for applicability and compared to the proposed ET Cover System. The ACAP consisted of two sites in Montana: the Polson Municipal Landfill (Lake County) and the Helena Valley Municipal Landfill (Clark County). Additionally, the Valley View Landfill (VVL) is located approximately 1 mile from the former Smelter site and was completed with an ET cover system using similar soil types and borrow materials. The existing ET cover recommendations and designs were reviewed and incorporated into this evaluation.

Two different methods were used to evaluate site-specific climate conditions and soil, a water balance method and unsaturated hydrologic numerical modeling. The water balance method used was based on results from the ACAP funded by the USEPA and described in *Water Balance Covers for Waste Containment: Principles and Practice* (Albright et al., 2010). The hydrologic modeling was performed using the HYDRUS-1D model (PC-Progress, 2014) which requires a large amount of site-specific input parameters encompassing daily meteorological data, vegetation properties, and borrow source soil hydraulic properties. The development of the HYDRUS model was guided by hydraulic modeling previously conducted for conceptual design (CH2M HILL, 2013) and also by the results of the water balance analysis conducted by Hydrometrics (Hydrometrics and CH2M HILL, 2012).

Hydrometrics conducted a borrow source field investigation on July 2, 3, and 25 of 2014, to provide borrowspecific soil sample analytical results (Attachment 1) for use in the evaluation. The borrow sources included area from the adjacent VVL (described in more detail in Section 3.0) and borrows located adjacent to the former Smelter site. The results of the evaluation were used to define an ET cover storage layer thickness based on borrow soil samples and define engineering parameters for use in the design and construction of the ET Cover System section.

2.0 Purpose and Objectives

The primary purpose of the ET Cover System IM is summarized as follows:

- Further reduce the potential for inorganic soil contaminants to leach to groundwater by eliminating or substantially reducing the amount of infiltration through contaminated materials.
- Provide a clean surface for runoff.
- Eliminate human and ecological receptor exposure to inorganic-contaminated soil.

The specific objectives of the ET Cover System IM are as follows:

- Reduce the percolation of precipitation and associated leaching of inorganic contaminants in vadose zone soil to groundwater.
- Replace the existing temporary cover system, which is deteriorating.
- Eliminate the potential for people and wildlife to have direct contact with contaminated surface soil and from windblown sediment.
- Reduce the volume and improve the quality of contaminated stormwater that is being collected and treated by the onsite high-density sludge water treatment system.

The uppermost vegetated soil layer of the ET Cover System will be designed to store and release infiltration through evaporation and transpiration processes, and provide for shedding of clean stormwater in the event of runoff. The cover system uses the water storage capacity of the soil layer to minimize percolation, as an alternative to lower-permeability barriers using traditional cover materials (for example, clays, asphalt, and geotextiles), where performance primarily is based on increased runoff as a trade-off to decreased infiltration. Under appropriate, site-specific conditions, the ET Cover System can be a more cost-effective and sustainable (long-term) alternative for minimizing infiltration than traditional engineered cover designs.

3.0 Case Study Evaluations

This section summarizes the case study evaluations conducted by Hydrometrics as part of the *ET Cover System Hydrologic Evaluation and Interim Measures Engineer Plan* (Hydrometrics and CH2M HILL, 2012). The ACAP was a 6-year, multistate, multitechnology research collaboration intended to answer questions regarding the adequacy of alternative cover designs to be protective as landfill applications. The field study data report (Albright and Benson, 2005) provides a field dataset and summarizes the data and supporting analysis. The ACAP included two sites in Montana that have conditions similar to those found in the East Helena site: one located in Polson and the other located in the Helena Valley. Both were constructed with an ET cover that included a capillary break layer. Additionally, the ET cover system installed at the VVL, located approximately 1 mile from the former Smelter site, was evaluated as it was completed using similar soil types and borrow materials proposed for the ET Cover System. Finally, studies of ET covers for mine waste were incorporated into the evaluation.

3.1 Alternative Cover Assessment Project Case Study

The test section at the Polson Municipal Landfill in Lake County was constructed with a 115-centimeter (cm) (45-inch) storage layer comprising sandy gravel, silty sand, silt, and topsoil. The sandy gravel, silty sand, and topsoil were obtained onsite. The silty sand was obtained from a local borrow source approximately 3 miles from the site. Numerical modeling was performed for the alternative cover using HYDRUS for a ten year period, using the highest precipitation year on record (1998) for all ten years. The results predicted approximately 0.6 millimeter (mm) of percolation in the first year, and 0.1 mm per year for the remaining

years in the 10-year simulation (Albright and Benson, 2005). Field data collected from November 1999 to October 2004 measured a total percolation through the ET cover of 0.8 mm (0.2 mm per year average). The Polson site receives approximately 25 percent more precipitation annually than the former Smelter site.

The test section at the Helena Valley Municipal Landfill in Lewis and Clark County was constructed with a 135-cm (53-inch) storage layer consisting of gravel, sandy clay, and topsoil. The gravel was used to simulate an interim cover and was obtained from a local gravel pit. The sandy clay for the ET cover was obtained onsite and is currently being used for daily cover at the landfill. Numerical modeling was performed with HYDRUS for a 10-year period, using the highest precipitation year on record (1975) for all 10 years. The results predicted a percolation rate of less than 1 mm per year average over the 10-year period simulated. Field data collected from October 1999 to October 2004 measured a total percolation of 0.1 mm at the site.

As part of the ACAP, performance data were developed for ET covers, including threshold values. The threshold values are based on conditions under which a percolation rate of less than 3 mm per year can be readily met. Threshold values are intended for use in establishing general guidelines to help evaluate a site for potential applicability of a successful ET cover. The exceedance of threshold value indicates that it might be more difficult to design and meet the target percolation rate with an ET cover. However, detailed site-specific hydrologic evaluations are necessary to address all factors influencing cover performance. Table 1 shows the ACAP threshold values (USEPA, 2006) and precipitation values for the Helena area.

The Helena area precipitation values are from the National Weather Service meteorological station at the Helena Regional Airport. The precipitation and potential evapotranspiration (PET) values are from the Helena Valley Agrimet Station (Bureau of Reclamation, 2012). Table 1 shows the ACAP threshold values (USEPA, 2006) and that the Helena area conditions are within the threshold values for ET cover performance with the exception of the ratio of precipitation to potential evapotranspiration (precipitation/PET), which is slightly higher. The exceedance of the precipitation to PET ratio indicates that additional detailed evaluation and design are required for application of an ET cover in the Helena area. Additional evaluations were conducted as summarized in this TM.

TABLE 1

Alternative Cover Assessment Project Evapotranspiration Performance Data*

Factor	Threshold	Helena Area			
Annual precipitation	<325 mm	270 mm			
Spring/summer precipitation	<380 mm	206 mm			
Fall/winter precipitation	<190 mm	64 mm			
Snow and spring precipitation	<250 mm	184 mm			
Precipitation/PET	<0.20	0.24			

*Modified from November 2006 U.S. Environmental Protection Agency Proceedings from Alternative Covers for Landfills, Waste Repositories and Mine Wastes Workshop, Denver, CO.

3.2 Valley View Landfill Case Study

In addition to the ACAP study and performance data, the VVL has an ET cover and is located approximately 1 mile southeast of the East Helena site. The VVL design was based on the use of onsite source materials and was evaluated by numerical modeling using HYDRUS (Albright, 2003).

The ET cover at the VVL was monolithic, meaning it did not include a capillary break layer that would help increase storage within the storage layer. However, on the basis of soil testing for onsite materials and HYDRUS modeling evaluating different soil types and ET cover thickness, a 60-cm (24-inch) storage layer was determined to be adequate for reducing the average annual percolation rate to less than 3 mm per year over the 10-year model simulation period (Albright, 2003). Soil conditions are similar between the two

locations, suggesting that onsite materials may be similar to those found at the VVL and may be adequate for use in the ET cover.

ACAP study results and more site-specific data available from the VVL strongly suggest that the use of an ET cover at the site could provide adequate performance. These results were used to further refine a conceptual ET cover design for the site, and evaluate that conceptual design through analytical and numerical methods described in the following sections.

3.3 Mine Waste Studies

ET Covers for Mine Waste Approved in Montana

In addition to municipal waste type landfills, soil-based covers that employ water storage and evapotranspiration for reducing percolation have been used in Montana for mine waste, including Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Superfund sites related to historical mine activities. Table 2 provides a summary of ET covers, including comments regarding their use. Several of the covers contain soil amendments such as lime. The use of these amendments appears to reduce infiltration rather than increase ET performance. In particular, South Emma Dump was designed with a 6-inch amended vegetated layer and a 39-inch storage and release layer. The South Emma Dump cover is similar to the cover considered for the former Smelter site; however, it did not include a performanceenhancing capillary break layer.

			Annual Precip.	Wasto Tuno and	
Project/Location	Program	Cover Design	(inch)	Waste Type and Amount	Comments
Mineral Hill Mine ^a Park County, Montana 2000-2001	Montana Mine Reclamation Act Operating Permit	Topsoil (12-inch). Subsoil (36-inch). No capillary break.	10	1 Mt mine tailings. Repository area = 13 acres	Includes synthetic underliner and drainage collection system. Placed synthetic liner over portion of cap in 2005; reduced toe seepage from 2.5 to 1.5 gallons per minute. Seepage believed attributable in part to lateral groundwater inflow.
Subarea 1 Streamside Tailings Operable Unit ^b Silver Bow County, Montana Ongoing	CERCLA	Amended soil. No capillary break (22-inch).	13	Fluvial tailings. 197,750 CY	Lime added to uppermost 3 feet of tailings. Design plan requirements include depth to groundwater < 10 to 20 feet. Percolation through repository cannot cause exceedances of groundwater quality standards.
Corbin Flats ^c Jefferson County, Montana 2009	CERCLA Voluntary Cleanup Program	Topsoil (12-inch). Capillary break (6-inch).	12	Tailings 307,600 CY	Geotextile filter fabric above capillary break. Fertilizer and mulch applied. Cap includes only soil, not specifically designed as ET cap.
Anaconda-Deer Lodge Old Works/East Anaconda Operable Unit ^d Silver Bow County, Montana	CERCLA	Topsoil (18-inch). No capillary break.	13	Mine waste	Original temporary 6-inch soil cover increased to 18 inches in 2010.
Milltown Sediments and Opportunity Ponds Remedial Design Unit ^e Silver Bow County, Montana	CERCLA	Amended topsoil (12-inch). No capillary break.	13	Mine waste/ sediments 600 acres	Amended upper 6 inches of tailings with Lime Kiln Dust. Amended upper 4 inches of cover with 1.5 percent OM to enhance water-holding capacity. Cover failure resulting from phytotoxic soil cover conditions and failure of vegetation growth.
Emma Dump; Silver Bow Creek/Butte NPL Site; Butte Priority Soils Operable Unit ^f	CERCLA	Soil North Emma Dump (12-inch). Soil South Emma	12	Tailings 130,828 CY	Upper 6 inches of soil amended with OM (manure) plus fertilizer, straw mulch crimped on top.

TABLE 2

TABLE 2 ET Covers for Mine Waste Approved in Montana

Project/Location	Program	Cover Design	Annual Precip. (Inch)	Waste Type and Amount	Comments
Silver Bow County,		Dump (39-inch).			Only South Emma Dump designed as
Montana		No capillary break.			true ET cover.

Notes:

^a Mineral Hill Mine: As-Built Report TSF and OTS Reclamation, Mineral Hill Mine Site, Jardine, MT. Bronson Engineering, Inc. and Shepherd Miller. February 2002. Three volumes.

^b Final Design Report – Reach A of Subarea 1 – Streamside Tailings Operable Unit. Maxim Technologies, Inter-Fluve, Reclamation Research Unit, and Bighorn Environmental. June 1999.

^c Corbin Flats Tailings Site Voluntary Cleanup Plan. Olympus Technical Services, Inc. July 1997.

^d Request for Change to Final Vegetative Cover, July 2010. Old Works/East Anaconda Development Area Operable Unit. Remedial Action Work Plan/Final Design Report. Volume III Addenda. August 1996.

^e Letter from S. Dunlap ARCO to C. Coleman, USEPA Region 8, dated December 21, 2011. Re: Final Cover Plan for Milltown Sediments at the Opportunity Ponds RDU 8.

^f Silver Bow Creek/Butte Area NPL Site Butte Priority Soils OU Final Construction Completion Report. Emma Dump. October 1999. Abbreviations:

CY = cubic yards

Mt = million tons

OM = organic matter amendment

4.0 Water Balance Analysis

A water balance analysis was conducted to calculate an estimate of the required thickness of the ET Cover using site-specific climatologic data and borrow source soil types. The results of the water balance analysis were used as the starting point for the final design and refined with hydrologic modeling using HYDRUS for the cover design. An initial water balance analysis was conducted by Hydrometrics to evaluate site conditions, applicability of the site, and potential borrow sources for an ET cover (Hydrometrics and CH2M HILL, 2012). The following water balance analysis builds on the Hydrometrics evaluation using additional borrow source locations and sampling data.

The method employed in this water balance analysis is described in Albright et al. (2010). This method uses the precipitation and PET values, and empirical factors developed through the ACAP program to estimate the monthly change in soil water storage. The monthly changes in soil water storage are then summed to required water storage capacity to prevent deep percolation through the cover, for a particular year. The required cover thickness is than calculated from the required storage capacity, using the soil water storage capacity (field capacity - wilting point) obtained from laboratory analysis of the soil water characteristic curves.

The application of the method for the site was conducted by Dr. William Albright of the Desert Research Institute and is described in Attachment 2. A summary of the analytical method, input values used, and results of the analytical evaluation follows.

The analytical method uses a monthly calculated water balance with the following formulas. The precipitation and PET values were for the Helena area from years 1979 to 2011. The maximum annual required storage calculated over this period was 49 mm (1985 – 1986). The soil thickness required to store 49 mm of infiltration was calculated for 18 different soil types from various borrow locations. The estimates were completed for the large range of soil types to help qualify the uncertainty of soil across the site, and from specific borrow sources.

Monthly Computation of Required Storage (S_r)

$$\mathbf{S}_{r} = \sum_{m=1}^{6} \left\{ \left(\mathbf{P}_{m} - \beta_{FW} \mathbf{PET}_{m} \right) - \Lambda_{FW} \right\} \begin{bmatrix} \mathbf{P}_{m} \\ \mathbf{P}_{m} \end{bmatrix}$$

Fall-Winter Months

$$+\sum_{m=1}^{\infty}\left\{\left(P_{m}-\beta_{ss}PET_{m}\right)-\Lambda_{ss}\right\}$$

Spring-Summer Months

Include only months that exceed P/PET threshold

If $\Delta S_m < 0$, set $\Delta S_m = 0$

6

TABLE 3

The required soil thickness ranged from 0.24 to 1.17 meters (see Table 3). The calculations show that two of the soil types were considered less desirable for the ET Cover, samples EB-ET-1 and EB-ET-2, derived from a relatively coarse soil with low fines content from the east field excavations.

Volumetric Water Content (%) Soil Thickness (m) Field Wilting Plant **Required to Store** α Capacity 49 mm of Water* Soil Sample Saturated Point Available (cm⁻¹) Ν Residual EB-ET-1 0.0441 1.29 20.2 9.1 3.0 6.1 0.80 (1.07) 0 (1.42) (0.0573) (5.8) (1.2) (4.6) EB-ET-2 0 25.2 13.6 9.8 0.0164 1.34 3.8 0.50 (0.61) (0.0213) (1.48) (9.6) (1.6)(8.0)23.8 15.4 EB-ET-3 0.0155 1.31 1.42 39.9 8.4 0.32 (0.37) (0.0202)(1.45)(17.4)(4.3) (13.1)0.0090 34.7 VV-ET-1 1.20 0 45.2 16.5 18.2 0.27 (0.25) (0.0117) (1.33)(27.8) (19.6) (8.2) 28.9 VV-ET-2 0.0095 1.23 38.8 13.4 15.5 1.81 0.32 (0.31) (0.0124)(15.8) (1.36)(23.2)(7.4)VV-ET-3 0.0121 1.28 1.83 35.6 23.9 9.6 14.3 0.34 (0.37) (0.0157) (1.41)(18.5)(5.4 (13.1) VVL Comp 0.0061 1.30 44.6 28.9 10.5 18.4 0.27 (0.27) 1.12 (0.0079) 0-10 (24.1) (5.8) (18.3) (1.43)

22.7

(16.7)

30.3

(23.9)

7.2

(3.3)

11.6

(5.6)

15.5

(13.4)

18.7

(18.3)

Unsaturated Soil Hydraulic Parameters and Layer Thickness of Each Soil Required for Maximum Storage

0.32 (0.37)

0.26 (0.27)

VVL Comp

VVL Comp

11-15

16-20

0.0140

(0.0181)

0.0094

(0.0123)

1.32

(1.45)

1.26

(1.39

0.27

0.00

43.0

46.9

				Volum	etric Water C	ontent (%)		Soil Thickness (m)		
Soil Sample	α (cm⁻¹)	N	Residual	Saturated	Field Capacity	Wilting Point	Plant Available	Required to Store 49 mm of Water		
VVL Comp 21-30	0.0089 (0.0116)	1.26 (1.39)	0.00	48.7	30.7 (24.4)	11.8 (5.7)	18.9 (18.7)	0.26 (0.26)		
VVL Comp 31+	0.0065 (0.0837)	1.21 (1.46)	0.00	57.4	43.2 (11.7)	20.3 (2.0)	22.9 (9.7)	0.21 (0.51)		
VVL Comp TP-10	0.0231 (0.0300)	1.31 (1.44)	1.43	43.9	20.4 (14.4)	7.2 (3.7)	13.2 (10.7)	0.37 (0.46)		
VVL Comp TP-12	0.0059 (0.0077)	1.30 (1.43)	3.43	46.8	32.0 (26.9)	13.0 (8.0)	19.0 (18.9)	0.26 (0.26)		
VVL Comp TP-13	0.0083 (0.0108)	1.25 (1.37)	0.00	49.4	34.0 (27.3)	14.0 (7.0)	20.0 (20.3)	0.25 (0.24)		
WB Borrow-1	0.0179 (0.0233)	1.29 (1.42)	1.94	47.4	26.6 (19.4)	10.3 (5.4)	16.3 (14.0)	0.30 (0.35)		
WB Stockpile-1	0.0118 (0.1522)	1.29 (1.54)	1.45	44.3	27.8 (6.2	10.6 (2.0)	17.3 (4.2)	0.28 (1.17)		
WB Stockpile-2	0.0153 (0.0199)	1.36 (1.50)	3.35	47.1	22.7 (17.0)	7.9 (5.0)	14.8 (12.0)	0.33 (0.41)		
Topsoil-1	0.0137 (0.0177)	1.39 (1.52)	3.92	59.7	34.0 (25.6)	11.1 (7.0)	22.9 (18.6)	0.21 (0.26)		

Unsaturated Soil Hydraulic Parameters and Laver	Thickness of Each Soil Required for Maximum Storage

* Numbers in parentheses are corrected by the method described in the NRC report (Benson et al., 2011).

Abbreviations:

 α = empirical related to inverse of the air entry suction

m = meter

TADLES

mm = millimeter

N = empirical related to pore-size distribution

The effect of natural pedogenic processes including wet-dry and freeze-thaw cycles and biointrusion were included in the evaluated soil types. The laboratory soil parameters were adjusted to reflect these processes and the required soil thickness recalculated. Some soil is more susceptible to changes over time (Benson et al., 2011). Two soil types (WL Comp 31+ and WB Stockpile-1) indicated significant increases in required soil thickness. Both consisted of soil types that are considered highly plastic (unified soil classification system types CL and CH) and less desirable for the ET Cover. When adjusted for the effects of pedogenesis, cover thickness for desirable soil types ranged between 0.24 and 0.46 meter. However, this range is based solely on storage, and the required thickness to establish and maintain vegetation for adequate transpiration is greater, as discussed in Section 5.0.

A factor of safety for design of ET covers helps offset some of the uncertainties associated with in-place soil properties, and vegetation growth. A reasonable factor of safety based on field performance of ET covers to use as a guide is 1.25 times the calculated required soil thickness, or 0.9 meter, whichever is greater (USEPA, 2004). Given the results of the water balance analysis and soil types selected for use in construction, maintenance, and successful vegetation critical for an ET cover, the 0.9-meter (approximately 36-inch) soil thickness was selected for hydraulic modeling. The modeling was then used to refine and validate the design with more realistic (daily) meteorological data and soil characteristics. Results of the modeling were used for design and quality control during construction.

5.0 Evapotranspiration Cover System HYDRUS Modeling

The ET Cover System is defined by the following layers (from top to bottom): an amended storage layer (storage layer blended with Upper Lake Marsh (ULM) material), storage layer, and capillary break layer. The ET Cover is proposed to be placed over the interim cover system. The HYDRUS modeling employed the results from laboratory analysis of borrow source samples proposed for use in the ET Cover System IM. The soil sample results from previously conducted sampling and analysis (CH2M HILL, 2013) and additional samples collected from the VVL and West Fields borrow area were used as part of this evaluation. In addition, field investigation and sampling was conducted by Hydrometrics to support this evaluation and is documented in Attachment 1. A summary of the sample results is provided in Table 4. A total of 15 soil types were used in the HYDRUS evaluation, of which 14 soil types were used for the storage layers and one soil type was used as the capillary break layer.

The ET Cover System was evaluated using the HYDRUS-1D finite element numerical model designed for simulating saturated/unsaturated flow through soil. HYDRUS has been used to model ET covers for the Montana Department of Environmental Quality and others (such as USEPA and the Desert Research Institute) and was also used in the case study evaluations. This modeling evaluated an ET Cover scenario, considering conservative but reasonable site conditions. Previously conducted model scenarios with varying key design parameters were run to evaluate sensitivity of the cover performance (CH2M HILL, 2013). This modeling evaluated the variability of soil types proposed for use as potential borrow sources and guided the selection of design characteristics to be used in construction.

5.1 Model Inputs

The following sections describe the key parameters used to develop the ET Cover base case scenario. Key parameters in the HYDRUS model input are as follows:

- Top boundary condition (precipitation, potential evaporation, and potential transpiration)
- Bottom boundary condition (flow past base of capillary break layer percolation)
- Soil properties (soil water retention hydraulic parameters, saturated hydraulic conductivity)
- ET Cover thickness (individual soil layer thickness, root depth, and relative root density)
- Initial condition (soil moisture representative of relatively steady state conditions)

A conceptual diagram of the HYDRUS model inputs is shown in Attachment 3. The modeling was conducted for a 35-year period. The highest percolation over 10 consecutive years was used to calculate an average annual percolation rate for evaluation of ET Cover performance. Specific information required for processes simulated in the HYDRUS-1D package are described in the HYDRUS user manual (Simunek et al., 2012).

5.1.1 Top Boundary Condition

The top boundary condition of the soil profile was defined by three atmosphere-land surface interaction processes: precipitation, potential evaporation (PE), and potential transpiration (PT). PT relates mainly to atmospheric conditions and leaf coverage of the surface and is therefore discussed here along with PE as part of the climatological data that define the upper boundary condition of the HYDRUS-1D model. The upper boundary is flat; however, runoff is addressed when precipitation exceeds the infiltration capacity of the soil type. The infiltration is reduced at the volume of precipitation exceeding the saturated hydraulic conductivity of the soil to account for runoff.

Precipitation data from the Helena, Montana, station (Weather Source COOP ID: 244055, managed by the Great Falls Weather Forecast Office) from 1979 through 2013 were used.

The reference evapotranspiration (ET₀) was calculated using the American Society of Civil Engineers (ASCE) Penman-Monteith Standardized Form using the Ref-ET software (Allen, 2012) for the 1997 to 2013 meteorological data from the AgriMet station located in Helena, Montana. The calculation used the daily maximum and minimum temperature, solar, humidity, and wind data. The ET₀ for the remaining

precipitation period was post-processed using correlations developed between the AgriMet/REF-ET and NLDAS dataset for 1997 through 2013 and applied to the 1979 through 1997 dataset.

Total PET was calculated according to the ASCE Penman-Monteith Standardized Form ET_0 using grass as the reference crop. The leaf area index (LAI) and Ritchie-Burnett-Ankeny Function (Albright et al., 2010) [PT=0.52xPETxLAI^{0.5}] were then used to calculated the PT for the design ET cover vegetation community. The PE was calculated as the remainder of the PET: PE = PET - PT.

A seasonal distribution of LAI was developed to represent ranges of probable LAIs for western wheatgrass under similar climate conditions. The design LAI is based on the average monthly values reported by Frank (2002), which are considered conservative. Annual precipitation at the Frank (2002) study sites near Mandan, North Dakota, averaged 13.3 inches per year during the study period compared to the Helena site average of approximately 10.6 inches per year. The grasses at the Frank (2002) study sites were also grazed, suggesting lower LAI values than for an ungrazed site such as the design ET Cover. For the model, input for the LAI was interpolated linearly between adjacent end-of-the-month values that could be calculated directly, in order to generate the daily LAIs that were required.

TABLE 4

Soil Sample Analytical Summary

	Summary of Moisture Retention				Calculated Unsaturated Hydraulic Properties									
	Oversize Correction			Hydraulic Conductivity - Constant Head	As Tested Oversize Corrected			Corrected						
	1/3 Bar Point Volumetric (% cm ³ /cm ³)	15 Bar Point Volumetric (% cm ³ /cm ³)	Water Holding Capacity (% cm³/cm³)	Oversize Corrected K _{sat} (cm/sec)	α (cm ⁻¹)	N	θ _r (% vol)	θ _s (% vol)	AWHC (oversized corrected)	Percent Gravel (% USCS)	Passing #200	Max. Dry Bulk Density (oversized corrected g/cm ³)	Relative Compaction of Test Samples	USCS
B-ET-1	8.2	2.4	5.8	1.10E-02	0.0441	1.2937	0.0	20.16	0.058	57.1	5.3	2.27	85	GP
B-ET-2	13	8.2	4.8	7.70E-03	0.0164	1.3434	0.0	25.06	0.048	49.4	9.3	2.17	85	GM
B-ET-3	25.3	8.2	17.1	6.70E-04	0.0155	1.3145	1.4	40	0.17	10	44	1.87	85	SM
V-ET-1	35.7	16	19.8	6.00E-05	0.009	1.2048	0.0	45	0.20	36	34	1.73	85	GC
V-ET-2	29.3	12.6	16.7	2.90E-04	0.0095	1.2335	1.8	39	0.17	40	27	1.86	85	GC
V-ET-3	24.3	9.6	14.7	7.90E-04	0.0121	1.282	1.8	36	0.15	49	15	1.89	85	GC
/L-Comp 0-10	29.8	10.5	19.4	2.20E-04	0.0061	1.3021	1.0	38	0.19	39	25	1.87	85	GC
VL-Comp 11-15	24	7.1	16.9	1.20E-03	0.014	1.317	0.2	38	0.17	38	20	1.88	85	SM
VL-Comp 16-20	31.7	11.5	20.2	4.50E-04	0.0094	1.2646	0.0	43	0.20	40	28	1.8	85	GC
VL-Comp 21-30	31.7	11.7	20	2.60E-04	0.0089	1.2641	0.0	43	0.20	40	29	1.76	85	GC
VL-Comp 31+	43.8	20.2	23.6	9.50E-05	0.0065	1.213	0.0	54	0.24	18	60	1.52	85	СН
VL Comp TP-10	20.7	7.1	13.6	2.00E-03	0.0231	1.3099	1.2	38	0.14	34	22	1.9	85	SC
VL Comp TP-12	32.4	12.9	19.6	9.60E-05	0.0059	1.3005	3.0	41	0.20	36	30	1.78	85	GC
VL Comp TP-13	35.4	14	21.4	2.30E-04	0.0083	1.245	0.0	46	0.21	29	33	1.69	85	SC
/B Borrow-1	24.5	10.3	14.3	4.40E-04	0.0179	1.2868	1.8	44	0.14	12	47	1.75	85	SC
/B Stockpile-1	26.7	10.5	16.2	3.80E-04	0.0118	1.2869	1.4	42	0.16	9	62	1.84	85	CL
/B Stockpile-2	21.8	7.9	13.9	3.70E-04	0.0153	1.3648	2.8	40	0.14	24	48	1.89	85	SC
opsoil-1	32.9	11	21.9	4.40E-04	0.0137	1.3859	3.9	60	0.22	0	62	1.3	85	ML

AWHC = available water holding capacity

cm³ = cubic centimeter

cm/sec = centimeter per second

USCS = United Soil Classification System

Table 5 shows the average LAI values reported for the end-of-month value. The average LAI was used to calculate the PE and PT for the base case simulation and is considered representative. The average value was used based on the sensitivity analysis conducted as part of the previously conducted HYDRUS modeling, and was used as the recommended values (CH2M HILL, 2013). LAI values of zero were used for the months of October through March of each year.

TABLE 5 Leaf Area Index End-of-Month Values for Potential Transpiration Calculation

Month	Average (Design Values)
Apr	0.11
May	0.36
Jun	0.45
Jul	0.43
Aug	0.35
Sep	0.22

5.1.2 Bottom Boundary Condition

A free draining boundary condition was placed at the base of the capillary break layer. Flow through this bottom boundary was counted as percolation that escaped evapotranspiration and migrated below the cover system.

5.1.3 Soil Properties

Table 3 summarizes the laboratory soil water retention hydraulic properties (laboratory results found in Attachment 1). The soil hydraulic parameters for the capillary break layer were from the EB-ET-2 material. The corrected values represent the parameters for the soil including the 3-inch to ¾-inch fraction. A simulation was run for each of the VVL and West Fields (WB) borrow soil types. The simulation was used to evaluate the percolation rates across a broad range of potential borrow sources and soil types.

The laboratory testing was conducted at 85 percent of maximum soil compaction density to mimic naturally occurring in-situ borrow soil density. This lower compaction at construction provides a less restrictive structure to establish plant rooting in the cover material and vegetation. Therefore, the modeling used the soil properties from the laboratory results based on a target soil density of 85 percent.

5.1.4 Evapotranspiration Storage Layer Thickness

The results of water balance analysis were used to determine a design storage layer thickness of 36 inches. The storage layer consists of a combined amended storage and storage layer of 36 inches overlying a capillary break layer of 6 inches. Previously conducted HYDRUS modeling (Hydrometrics and CH2M HILL, 2012, and CH2M HILL, 2013) indicated relatively low percolation rates with thinner storage sections. However, the minimum design thickness of 36 inches was used as the basis of this evaluation to allow for vegetation growth, uncertainties in precipitation, modeling, material properties, and long-term potential for erosion as recommended by USEPA guidance (USEPA, 2004). This guidance is considered appropriate for the former Smelter site.

The amended portion of the storage layer (upper 8 inches) includes addition of a to-be-determined volume of ULM material to help establish vegetation growth on the cover. The HYDRUS model simulation used the same properties of the storage layer for the amended layer. This is considered a conservative assumption given that the addition of the ULM material silt would increase the water-holding capacity of the amended layer.

The cover is assumed to be planted with mixed perennial bunchgrasses dominated by wheatgrass species. The rooting depth was assumed to be 36 inches, which meant that the combined vegetated and storage layer was assumed to have roots present throughout. Root density distributions for similar grassland plant communities were measured as part of the ACAP on a test site near Helena. The measured root density with depth was reported in Albright (2003) and is used in this modeling effort for the ET cover (see Table 6). Table 7 shows the plant stress parameters, which are representative of wheatgrass-dominated vegetation, used in the model. The depth of the root distribution was limited to the first 32 inches of the storage layer and was not extended into the capillary break or deeper layers.

Rooting Depth Relative Distribut	tion
Depth (cm)	Relative Root Density (cm ⁻¹)
0-10	0.284
10-20	0.213
20-30	0.159
30-40	0.119
40-50	0.089
50-60	0.067
60-70	0.050
70-80	0.037
80-90	0.028

TABLE 6 Rooting Depth Relative Distribution

Abbreviation: cm = centimeter

TABLE 7

Plant Water Stress Parameters for the Wheatgrass-Dominated Vegetation Community

Parameter	Description	Units	Values for Model
PO	Upper water content limit for root uptake to occur	cm	-10
Popt	Upper limit of optimum uptake range	cm	-25
P2H	Lower limit of optimum range (for pt of r2H)	cm	-5099
P2L	Lower limit of optimum range (for pt of r2L)	cm	-5099
Р3	Lower water content limit for root uptake to occur-wilting point	cm	-30591
r2H	Potential transpiration rate at P2H	cm/day	0.5
r2L	Potential transpiration rate at P2L	cm/day	0.1

Sources: Trlica and Biondini, 1990; Frank and Ries, 1990

Abbreviations: cm = centimeters, cm/day = centimeters per day

5.2 Initial Condition

The initial soil water pressure potential was set to an arbitrary -8 cm. The simulation was conducted for a 35-year time period (1979 to 2013), with model runs including an additional 10 years, repeating the first 10 years of climatic data (1979 to 1988), to provide for calibration of initial soil moisture profile conditions in the model. This procedure allows a length of time for initial soil water volumes and profile distribution in the soil column to approach representative equilibrium conditions prior to evaluation of the percolation over the 35-year period of evaluation. Check runs were conducted looking at soil profile moisture conditions at the end of this "stabilization" period and at the end of 10 years in the evaluation period. The check runs confirm that initial soil conditions had stabilized and the results were not influenced artificially by transitory

initial soil conditions. For evaluation of percolation rates, the 35-year period after the initial 10 years of stabilization was used.

5.3 HYDRUS Model Results

The model results for all soil types were reviewed over the entire period of simulation from 1979 to 2013 to determine the consecutive 10 years with the highest cumulative percolation for calculating an average annual percolation rate based on the highest percolation decade. The 10-year "highest" percolation was the simulation period from 1981 to 1990. The percolation rates calculated in the model were used because the highest precipitation events do not necessarily result in the highest percolation under ET cover conditions. Using a 10-year average annual percolation rate provides a representative but conservative estimate of cover performance for consistent comparison over a range of soil types.

Table 8 summarizes the HYDRUS modeling results for each soil type and average annual percolation rates. A more detailed summary is provided in Attachment 4. As shown in Table 8, the percolation rates ranged from 0.001 to 0.68 mm per year. The percolations rates are all relatively low for a 36-inch-thick ET storage layer, which is consistent with the water balance analysis.

TABLE 8	
Summary of HYDRU	
Soil Type	Average Annual Bottom Percolation Rate (mm/year)
VV-ET-1	0.002
VV-ET-2	0.075
VV-ET-3	0.490
VVL-Comp 0-10	0.090
VVL-Comp 11-15	0.360
VVL-Comp 16-20	0.034
VVL-Comp 21-30	0.011
VVL-Comp 31+	0.001
VVL-Comp TP-10	0.680
VVL-Comp TP-12	0.017
VVL-Comp TP-13	0.006
WB-Borrow-1	0.003
WB Stockpile-1	0.023
WB Stockpile-2	0.006

Abbreviation:

mm/year = millimeter per year

The next step was to consider the water balance analysis, HYDRUS model results, and individual soil type properties to establish design criteria that would result in the predicted ET storage layer performance from a selected borrow source.

6.0 Design Criteria

The water balance analysis and the HYDRUS model results show that various borrow sources and soil types are acceptable for use as an ET cover. The results also show that some soil types are less desirable for the

storage layer owing to potential pedogenic effects on the soil properties. Table 9 summarizes the soil types, soil characteristics, percolation rates, and evaluation of design criteria on selected borrow soil types.

In the evaluation, the two soil types VVL-Comp 31+ and WB Stockpile-1 initially were eliminated because of a potential pedogenic process that could influence ET storage performance. Both soil types as tested resulted in relatively low percolation rates, yet are greater than 50 percent fines (passing sieve size 200) and have higher plasticity (classified as a CH and CL soil). Based on the evaluation, soil types that are greater than 50 percent fines would only be desirable if they classify with low plasticity, as a ML or CL-ML soil. The soil types used in the evaluation that meet this criteria are highlighted dark green.

Gravel content influences the performance of the storage layer given a specified thickness. The greater the gravel content, the decreased storage available with the 36-inch storage layer. However, a certain volume of gravel is allowable and considered as part of this evaluation. Based on the borrow sample results and the HYDRUS model for storage layer, 40 percent gravel or lower is reasonable (equal to or greater than 60 percent passing ¾ inches). Only one soil type, VV-ET-E, did not meet this criterion. All other soil types were considered acceptable based on this criterion and are shaded a lighter green.

The fines content is a critical component to the ET storage layer performance. Given the soil types characterized, a reasonable fines percentage of 25 percent to 50 percent was selected as a design criterion based on the percolation rates. While soil types with less fines can result in acceptable percolation rates, the design criterion of 25 percent to 50 percent is reasonable from selected borrow sources, provides a conservative design criterion during construction, and allows for variability in source materials and placement in the ET cover. Fines greater than 50 percent would be allowable if the soil classifies as a ML or CL-ML as discussed previously.

Application of these design criteria results in five general soil types and gradations that would provide percolation rates in the range of 0.002 to 0.060 mm per year, which are extremely low rates through the ET Cover. The following design criteria are proposed based on this evaluation and to provide for an as-constructed cap that meets the design performance:

- 100 percent passing 3 inch
- Greater than 60 percent passing ¾ inch
- Greater than 25 percent passing No. 200 sieve
- Less than 50 percent passing No. 200 for high plasticity soil

Figure 1 shows the application of these design criteria for the different borrow sources and soil type gradations. This figure provides another method of review and analysis of the selected design criteria to the potential borrow soil types, similar to Table 9. Figure 1 shows that the soil types should be readily available from selected borrow sources, though some selection and processing during placement might be necessary to ensure the cover meets the criteria as constructed.

TABLE 9 Evaluation of Soil Types, Percolation Rates, and Pedogenic Influences on Design Criteria

	Summa	Summary of Moisture Retention			Calculat	ted Unsaturate	ed Hydraulic Pr	operties							
	o	versize Correctio	n	Hydraulic Conductivity - Constant Head	As Te	ested	Oversize	Corrected							
Sample ID	1/3 Bar Point Volumetric (% cm ³ /cm ³)	15 Bar Point Volumetric (% cm ³ /cm ³)	Water Holding Capacity (% cm³/cm³)	Oversize Corrected K _{sat} (cm/sec)	α (cm-1)	N	θ _r (% vol)	θ _s (% vol)	AWHC (oversized corrected)	Percent Gravel (% USCS)	Passing #200	Percolation (mm/yr)	Max. Dry Bulk Density (oversized corrected g/cm ³)	Relative Compaction of Test Samples	USCS
VV-ET-1	35.7	16	19.8	6.00E-05	0.0090	1.2048	0	45.21	0.20	35.6	33.87	0.002	1.73	85	GC
VV-ET-2	29.3	12.6	16.7	2.90E-04	0.0095	1.2335	1.8	39	0.17	40	27	0.075	1.86	85	GC
VV-ET-3	24.3	9.6	14.7	7.90E-04	0.0121	1.282	1.8	36	0.15	49	15	0.494	1.89	85	GC
VVL-Comp 0-10	29.8	10.5	19.4	2.20E-04	0.0061	1.3021	1.0	38	0.19	39	25	0.090	1.87	85	GC
VVL-Comp 11-15	24	7.1	16.9	1.20E-03	0.014	1.317	0.2	38	0.17	38	20	0.360	1.88	85	SM
VVL-Comp 16-20	31.7	11.5	20.2	4.50E-04	0.0094	1.2646	0.0	43	0.20	40	28	0.034	1.8	85	GC
VVL-Comp 21-30	31.7	11.7	20	2.60E-04	0.0089	1.2641	0.0	43	0.20	40	29	0.011	1.76	85	GC
VVL-Comp 31+	43.8	20.2	23.6	9.50E-05	0.0065	1.213	0.0	54	0.24	18	60	0.001	1.52	85	СН
VVL Comp TP-10	20.7	7.1	13.6	2.00E-03	0.0231	1.3099	1.2	38	0.14	34	22	0.676	1.9	85	SC
VVL Comp TP-12	32.4	12.9	19.6	9.60E-05	0.0059	1.3005	3.0	41	0.20	36	30	0.017	1.78	85	GC
VVL Comp TP-13	35.4	14	21.4	2.30E-04	0.0083	1.245	0.0	46	0.21	29	33	0.006	1.69	85	SC
WB Borrow-1	24.5	10.3	14.3	4.40E-04	0.0179	1.2868	1.8	44	0.14	12	47	0.003	1.75	85	SC
WB Stockpile-1	26.7	10.5	16.2	3.80E-04	0.0118	1.2869	1.4	42	0.16	9	62	0.023	1.84	85	CL
WB Stockpile-2	21.8	7.9	13.9	3.70E-04	0.0153	1.3648	2.8	40	0.14	24	48	0.060	1.89	85	SC

Notes:

Darker green highlight = soil types that are greater than 50 percent fines and are classified with low plasticity, as a ML or CL-ML soil.

Lighter green highlight = soil types less than 40 percent gravel.

Bold text = desirable soil types.

Abbreviations:

AWHC = available water holding capacity

cm³ = cubic centimeters

cm/sec = centimeters per second

g/cm³ = grams per cubic centimeter

USCS = United Soil Classification System

FIGURE 1 Soil Type Gradation and Design Criteria

7.0 Conclusions

The water balance evaluation and hydraulic modeling support the use of an ET cover and predict that it would be effective under site conditions and available borrow source soil types. The evaluation determined soil types that are less desirable because of potential site pedogenic effects after construction. The evaluation also determined that required storage layers thicknesses are well within the recommended thickness for other cover considerations such as viable vegetation and variability in as-constructed conditions. The HYDRUS model results evaluated the performance of a 36-inch combined vegetated/storage layer with a 6-inch-thick capillary break layer for the remaining, desirable soil types. These results were used to refine the cover design and define the borrow soil design criteria.

8.0 Recommendations

Based on the results of the water balance evaluation and HYDRUS modeling, the following recommendations are provided:

- Both borrow sources could provide desirable ET cover soil types for a recommended 36-inch storage layer.
- The ULM material can be used as an amendment as long as the final, as-placed material meets the defined storage layer design criteria.

- Storage layer design criteria for either borrow source should include the following:
 - 100 percent passing 3 inch
 - Greater than 60 percent passing ¾ inch
 - Greater than 25 percent passing No. 200 sieve
 - Less than 50 percent passing No. 200 sieve unless classified as low plasticity (ML, CL-ML)
 - Placement density of 85 percent

9.0 References

- Albright, W.H., G.W. Gee, G.V. Wilson, and M.J. Fayer. 2002. *Alternative Cover Assessment Project Phase I Report*. Desert Research Institute. October.
- Albright, William. 2003. Report on Numerical Evaluations in Support of a Final Cover Design for the Valleyview Landfill Helena, Montana. January.
- Albright, W.H., and C.H. Benson. 2005. *Alternative Cover Assessment Program*, report to Office of Research and Development National Risk Management Research Laboratory Lab Land Remediation and Pollution Control Division.
- Albright, W.H., C.H. Benson, and W.J. Waugh. 2010. *Water Balance Covers for Waste Containment, Principles and Practice*. ASCE Press, Reston, Virginia.
- Allen, Richard. 2012. Reference Evapotranspiration Calculator. <u>http://extension.uidaho.edu/kimberly/2013/04/ref-et-reference-evapotranspiration-calculator/</u>. Accessed on April 24, 2013.
- Bureau of Reclamation. 2012. U.S. Department of Interior. Helena Valley Agrimet Station: <u>http://www.usbr.gov/gp/agrimet/station_hvmt_helenavalley.html</u>.
- CH2M HILL. 2012. Former ASARCO East Helena Facility Interim Measures Work Plan–Conceptual Overview of Proposed Interim Measures and Details of 2012 Activities. Final. Prepared for The Montana Environmental Trust Group, LLC, and the Montana Environmental Custodial Trust. September 2012.
- Frank, A.B. 2002. "Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains." *Environmental Pollution*. 116(3): 397-403.
- Frank, A.B. and R.E. Ries. 1990. "Effect of soil water, nitrogen, and growing degree-days on morphological development of crested and western wheat-grass." *Journal of Range Management*. 43(3): 257-260.
- Hydrometrics and CH2M HILL. 2012. Draft Technical Memorandum: Lower Ore Storage Area ET Cover System Hydrologic Evaluation Interim Measures Engineering Plan for the Montana Environmental Trust Group. October 15.
- Simunek, J., M. Senja, H. Saito, M. Sakai, and M. Th. Van Genuchten. 2012. *HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variable-Saturated Media*. September.
- Trlica, M.J. and M.E. Biondini. 1990. "Soil Water Dynamics, Transpiration, and Water Losses in a Crested Wheatgrass and Native Shortgrass Ecosystem." *Plant and Soil*. 126(2):187-201.
- U.S. Environmental Protection Agency (USEPA). 2004. (Draft) *Technical Guidance for RCRA/CERCLA Final Covers*. EPA 540-04-007.
- U.S. Environmental Protection Agency. 2006. *Proceedings from Alternative Covers for Landfills, Waste Repositories and Mine Wastes Workshop, Denver, CO.* Presented by University of Wisconsin, Madison; Desert Research Institute; and U.S. EPA. November 28-30.

- U.S. Environmental Protection Agency (USEPA). 2011. USEPA Fact Sheet on ET Cover Systems for Waste Containment.
- Weather Source. Helena, Montana COOP ID: 244055. <u>http://weathersource.com/account/official-weather?location=Helena%2C+MT&start-date=1%2F1%2F1900&end-date=1%2F6%2F1900&subscription-demo=1&sid=622js8j91fvv9s7o119eiocft4&search=1&station-id=16683&latitude=46.6047&longitude=-112.028. Accessed on April 3, 2013.</u>

Attachment 1 Field Sampling and Analytical Testing Results for Potential Borrow Material

ET Cover System: Valley View Landfill and West Bench Soil Sampling and Analysis

PREPARED FOR:	Nathan Betts, P.E., CH2M Hill
PREPARED BY:	Mark Rhodes, P.E., Hydrometrics
DATE:	November 7, 2014

Summary

Soil samples were collected for analysis as part of the ET Cover System Final Design for the East Helena Facility. Collected samples were then analyzed for suitability as borrow soil for the ET cover. Field sampling at Valley View Landfill (VVL) took place on July 2 and 3, 2014, and sampling of the West Bench area soils was conducted on July 25, 2014. This memorandum discusses the sampling procedure, preparation for laboratory analysis, and laboratory results.

Field Sampling

A Field Sampling and Analysis Plan (FSAP) was prepared prior to field sampling to provide guidance on sample collection and analysis. The FSAP anticipated sampling from 15 test pit locations spaced approximately 100 feet apart in the VVL future Cell 4 expansion area.

An excavator operated by VVL was used to construct test pits at locations specified by Hydrometrics. Actual test pit locations were based on the FSAP and observations made in the field. A survey grade GPS was used to record test pit location and ground surface elevation, as shown in Attachment A. Test pits were excavated to the maximum depth possible with the excavator, which ranged from 23 to 26 feet below ground surface (BGS).

Soils were documented on field logs and photographed during excavation. Lithological information recorded on field logs included soil color, texture, moisture, and estimated percentage of 3-inch-plus material. Information was recorded for each visually distinct layer within the test pit. Field data were used to generate test pit logs, which are included in Attachment B.

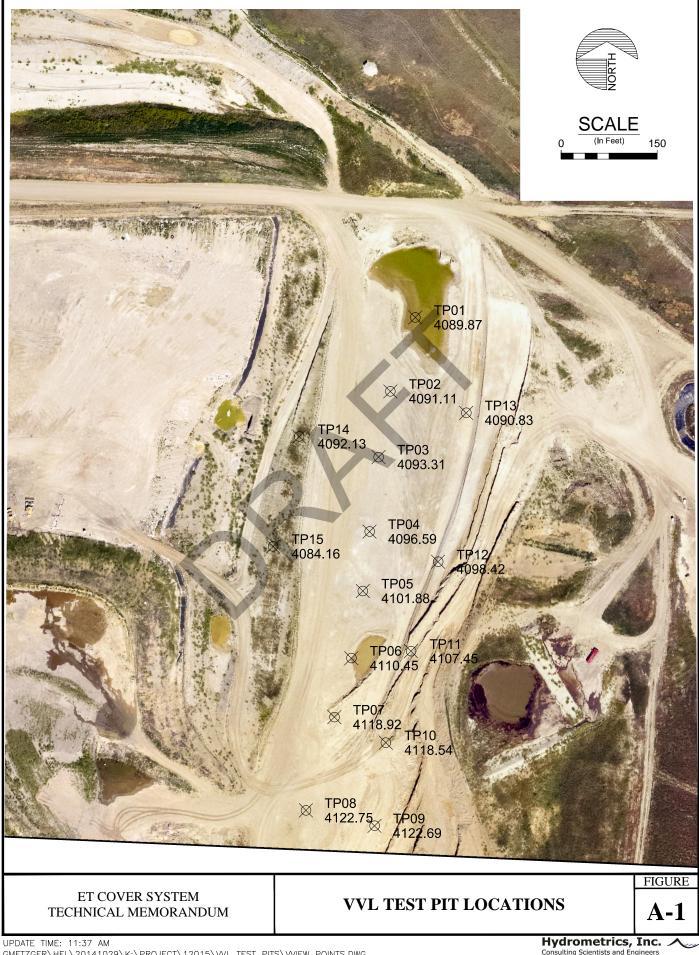
Soil samples were also collected from each visually distinct layer. Material was collected with a shovel from the test pit spoils as it was excavated. Material greater than three inches, as verified with a tape measure, was removed from the sample. Soil was collected throughout the sample depth interval and placed in a five-gallon bucket. Each bucket was sealed with a lid immediately after sample collection. Sample number, date, time, and depth were recorded on each bucket and field log. A total of 53 samples were collected.

Based on initial visual estimates of oversized material in the VVL samples, the design team determined sampling of additional soils from an alternate borrow area was necessary. Previous geotechnical investigations of soils located on the west bench indicated suitable ET

Cover materials may be available in the area. Two soil samples were collected from the CAMU 2 excavation soil stockpile, and one sample was collected from the former CAMU 2 clay liner borrow area. Soil samples were collected from several locations within the soil stockpile and borrow area using a shovel and placed in five-gallon buckets. Each bucket was sealed with a lid immediately after sample collection and the sample number, date, time, and location were recorded on the bucket. Approximate sample locations are shown in Attachment A.

Sample Analysis

VVL soil samples were taken to the Hydrometrics lab for analysis of the fraction finer than the #200 sieve as well as preparation for additional laboratory analysis. Thirty of the 53 samples were selected for fine fraction analysis. The thirty samples represented the visually distinct layers of material spatially distributed throughout the sampling area. Five-gallon samples were reduced to approximately 500 grams for sieve analysis. Samples were spread on a clean tarp, mixed to homogenize, and reduced by quartering until an appropriate sample size was obtained. Leftover material was returned to sealed five-gallon buckets. The reduced samples were dried in an oven and weighed. Wet sieve analysis was completed with the #200 sieve. The remaining material was again dried and weighed, and the percentage passing the #200 sieve was calculated.


Extensive gradation testing of the west bench soils had been conducted during previous geotechnical investigations and no additional gradation testing was conducted on these soils.

Field data and percentage of fines results were circulated to the design team to determine which samples to composite and ship to the Daniel B Stephens and Associates (DBSA) laboratory in Albuquerque, New Mexico. The design team determined eight composite samples were to be produced from the VVL samples, each composed of two to three individual samples. Individual samples were reduced by quartering to generate five-gallon composite samples. Initial gradation results and the individual samples included in each composite sample are shown in Attachment C.

The VVL composite samples and three west bench samples were shipped with a chain-ofcustody form and cover letter to DBSA for lab analysis on August 5, 2014. Due to the coarse nature of the VVL soil samples, DBSA requested additional material for analysis. An additional five-gallon bucket was prepared for each composite sample and shipped to DBSA with a chain-of-custody form and cover letter on August 14, 2014. Laboratory analysis at DBSA consisted of particle size analysis with hydrometer, soil water characteristic curves, rigid wall saturated hydraulic conductivity, calculated unsaturated K, van Genuchten modeling parameters, field capacity, wilting point, moisture content, bulk density, total porosity, and standard proctor tests. The DBSA lab report is included as Attachment D.

Attachment A Sample Locations

Attachment B VVL Test Pit Logs

			/dr sulting ena, M			ric and E	S , Engin	In	C			~		Test Pit Log Hole Name: TP01	7/0/004 4
Р <u>С</u> N Е	Project: OORDIN orthing: asting:	H2M Hill <u>NATES</u> 853299. 1365764	.32						Prope Legal	Descript	er: M ⁻ tion:	Γ Envi T9N I	ironmental Tru R2W S6 Iley View Land		//2/2014
Re Di Di Di Di		By: Geo ompany: ethod: achine:	orge Metz									Inn Hol Tot	mple Hammer ler Rod Size (l le Diameter (ir al Depth Drille ater Table Dep	n): ed (ft): 24	
7.	5 to 14.0	0 feet, Sa	e 001 is a ample 004 on July 3	4 is a 5-	on buck gallon	et from bucket	0.0 to from 1	4.0 fee 4.0 to 2	t, Samı 2.5 fee	ple 002 i t with m	s a 5- ateria	gallor I grea	h bucket from ter than 3 inch	4.0 to 7.5 feet, Sample 003 is a 5-gallon bucke diameter excluded. Water observed in test pi	t from t at
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEOI	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
-	001													Gravelly Sand sh mottles, cobbles to 8 inches, little clay, st, loose.	
- _5 - -	002										5_ - -		Consolidate	Sandy Loam ed clay, slightly moist, stiff.	
- 10 	003										- 10 - -		Loose, sligh	Sandy Loam with Gravels tty moist, more gravel at 12 feet, few red and s, subrounded fractured gravels.	
- 15 - -	004										_ 15 _ _ _			Gravelly Sand les to 10 inches, increased fine sand/fines,	
- - 20 - -											20 - -				
25											- 25				

			dre Sulting Ena, N			ric and E	S , Engin	In	C.			<u>~</u>		Test Pit Log Hole Name: TP02 Date Hole Started: 7/2/2014 Date Hole Finished: 7	7/2/2014	
Р <u>С</u> N Е	Project: OORDII orthing: asting:	H2M Hill NATES 853183. 1365725. Elevation:	61						Prope Legal	Descript	er: M ⁻ tion:	Г Envi T9N I	ronmental Tr R2W S6 ley View Lan			
Di Di Di Di Di	rilling Co riller: rilling Me rilling Ma rilling Flu	ethod: achine: uid:		-								Inn Hol Tot Wa	er Rod Size e Diameter (al Depth Drill ter Table De	n): ed (ft): 23 pth (ft):		
R 8.	emarks: 5 to 19.	Iing Method: Total Depth Drilled (ft): 23 Iing Machine: Water Table Depth (ft): Iing Fluid: Water Sample 005 is a 5-gallon bucket from 0.0 to 2.5 feet, Sample 006 is a 5-gallon bucket from 2.5 to 8.5 feet, Sample 007 is a 5-gallon bucket from to 19.0 feet with material greater than 3 inch diameter excluded. Water observed in test pit at depth of 22.0 feet on July 3, 2014. Image: Signal Si														
DEPTH	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
- - - _ - -	005							5			- - 5_ -		Reddish m clay, slight 2.5 - 8.5' Consolidat	ottles to 18 inch depth, loose, transition to sandy		
- 10 - - - 15 - 15 - 	007										_ 10 - - 15 - - -		Slightly mo	Gravelly Sand bist, loose, few red, black, greenish mottles. ' Gravelly Sand bove with slightly more gravel, moist.		
_20 _											20_ - - -					

			dr sulting ena, N			ric and E	S , Engin	In	C			~		Test Pit Log Hole Name: TP03 Date Hole Started: 7/2/2014 Date Hole Finished:	
Р <u>С</u> N Е	roject: <u>OORDIN</u> orthing: asting:	H2M Hill	18 .32						Prope Legal	Descript	er: M⁻ tion:	r Envi T9N F	ronmental Tru	State: Montana ist Group	
Re Dr Dr Dr Dr		By: Geo ompany: ethod: achine:										Inne Hol Tota	nple Hammer er Rod Size (I e Diameter (ir al Depth Drille ter Table Dep	n): ed (ft): 26	
1(0.0 to 14	Sample I.0 feet, S eter exclu	Sample 0	11 is a {	5-gallor	1 bucke	t from	14.0 to	19.0 fe	et, Sam	ple 0'	l2 is a	bucket from 5-gallon buck	5.5 to 10.0 feet, Sample 010 is a 5-gallon buck ket from 19.0 to 23.5 feet with material greater	et fron than 3
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEOI	LOGICAL DESCRIPTION	PIEZOMETER
5	008										- - - 5_		0.0 - 5.5' Slightly moi	Sand st, loose, red mottles.	
_10	009										- - - 10		Partially cor	Cobbles and Sand nsolidated, more fines. Sandy Loam	
45	010										- - -		Consolidate	ed, slightly moist, stiff.	
15	011										15 - -		Slightly moi		
_20 _	012										_ 20 _ _ _		19.0 - 26.0' Some gray,	Sand slightly more moist, loose.	
- 											- 25_				

			dre sulting ena, M			ric and E	S , Engin	In	C.			~		Test Pit Log Hole Name: TP04 Date Hole Started: 7/2/2014 Date Hole Finished	
F <u>C</u> N E	Project: COORDII lorthing:	H2M Hill	77 23						Prope Legal	Descript	er: M ⁻ tion:	Г Envi Т9N F	ronmental Tr R2W S6 ley View Lan	State: Montana ust Group	
Di Di Di Di Di	rilling Co riller: rilling Me rilling Ma rilling Flu	achine: uid:	-	-								Inn Hol Tot Wa	er Rod Size (e Diameter (i al Depth Drill ter Table Dej	n): ed (ft): 25.5 oth (ft):	
R 1	emarks: 7.5 to 24	: Sample 1.5 feet wi	e 013 is a ith materi	i 5-gallo ial great	on buck ter than	et from 1 3 inch	0.0 to diame	5.5 feet ter excl	t, Sam uded.	ple 014 i Water o	s a 5- bserv	gallon ed in t	bucket from est pit at dep	5.5 to 14.5 feet, Sample 015 is a 5-gallon buc th of 25.0 feet on July 3, 2014.	ket from
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
- - - 5	013										 5			s, slightly moist, loose.	
- - - _10	014										_ _ _ 10		5.5 - 17.5' Consolidat	Sandy Loam ed, slightly moist, stiff.	
- - 15 -											_ _ 15 _				
- - - - - - - - - - - - - - - - - - -	015										- 20 - -		17.5 - 25.5 Gray lense	Sand s, slightly moist, loose.	
- _25 -											- 25 -				-

			dro sulting ena, N			ric and E	S , Engir	In	C			~		Test Pit Log Hole Name: TP05 Date Hole Started: 7/2/2014 Date Hole Finished:	
P <u>C</u> N Ei	roject: <u>OORDIN</u> orthing: asting:	H2M Hill	77 23						Prope Legal	Descript	er: M⁻ tion:	「Envi T9N I	ronmental Tr R2W S6 ley View Lan	State: Montana ust Group	
Re Dr Dr Dr Dr	ecorded illing Co iller: illing Me illing Ma illing Flu	By: Gec mpany: ethod: achine: uid:	orge Metz	ger								Inn Hol Tot Wa	er Rod Size e Diameter (al Depth Drill ter Table De	in): led (ft): 25 pth (ft):	
R ⁱ fro	emarks: om 21.0	Sample to 25.0 fe	e 016 is a eet with n	5-gallo	n buck greater	et from than 3	0.0 to inch c	13.0 fee liameter	et, San · exclu	nple 017 ded.	is a s	5-gallo	n bucket fror	n 13.0 to 21.0 feet, Sample 018 is a 5-gallon bi	ıcket
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
- - _ 5 - -	016										- - 5_ - -		0.0 - 13.0' Some gray 2 feet, slig	Sand in top 2 feet, thin partially consolidated layer at htly moist, loose, some red mottles.	
- _10 - -											- 10_ - - -			Y Sandy Loam ted, slightly moist, stiff.	
15 15 20 20 2	017										15_ - - 20_				
- - - _25	018										_ _ _ 25		21.0 - 25.0 Slightly mo		
											 			Sheet	1 of 1

			dro sulting ena, N			ric and E	S , Engin	In	C.			~		Test Pit Log Hole Name: TP06 Date Hole Started: 7/2/2014 Date Hole Finished: 7	7/2/2014
F <u>C</u> N E	Project: OORDI orthing: asting:	H2M Hill <u>NATES</u> 852767. 1365664. Elevation:	02 .71						Prope Legal	Descript	er: Mī tion:	r Envi T9n f	ronmental Tr R2W S6 ley View Lan	State: Montana ust Group	
Di Di Di Di Di	rilling Co riller: rilling M rilling M rilling Fl	achine: uid:		-	n buck	et from	0.0 to	5.0 fee	t Sam	ole 020 i	s a 5-	Inn Hol Tot Wa	er Rod Size (e Diameter (i al Depth Drill ter Table De	n): ed (ft): 26	et from
1	7.0 to 23	3.0 feet w	ith materi	al great	ter thar	3 inch	diame	ter excl	uded.					он с то с , с он ₍ , с , с , с , с , с , с , с , с , с ,	
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
- - - 5	019							C		S			0.0 - 5.0' Slightly mo	Sandy Loam ist, loose, some clay lenses.	
- - - _10 -	020										5 10 		5.0 - 17.0' Rust color	Sand prevalent, slightly moist, loose.	
15 - - - 20 - - -	021										15 - - 20 - -		17.0 - 26.0 Moist, loos	' Gravelly Sand e.	
25											_ 25 _				

	H١	/dro	om	et	ric	S.	Ind	C .	∽				Test Pit Log	
	Cons	sulting	Scien	ntists	and E	Engin	eers							
Project: COORDII Northing: Easting:	H2M Hill <u>NATES</u> 852674 1365638	93 .29						Prope Legal	rty Own Descript	er: M⁻ tion:	「Envi T9N I	R2W S6	State: Montana ust Group	. 7/2/2014
Recorded orilling Co oriller: orilling Ma orilling Ma orilling Flu Remarks:	By: Geo ompany: ethod: achine: uid: : Sample	orge Metz	ger	on buck	et from	0.0 to	3.5 feet	t, Sam	ole 023 i	is a 5-	Inn Hol Tot Wa gallor	er Rod Size (e Diameter (i al Depth Drill ter Table Dep bucket from	(ID/OD, in): n): ed (ft): 26 pth (ft): 3.5 to 12.0 feet, Sample 024 is a 5-gallon buc	ket from
2.0 to 21	1.0 feet, S	Sample 02	25 is a {	5-gallor	1 bucke	t from :	21.0 to :	26.0 fe	et with r	nateri	al grea	ater than 3 in	ch diameter excluded.	
SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
022												Slightly mo	iist, loose.	
023										- 5_ - - 10_ -				
024										- - 15_ - - 20_		12.0 - 21.0 Slightly mo	' Gray/Brown Sand bist, loose.	-
025										- - - 25_				-
	Project: <u>COORDI</u> Northing: Easting: Ground E Prilling Ma Prilling Ma Prilli	Held Client: CH2M Hill Project: 20ORDINATES Northing: 852674. Easting: 1365638 Ground Elevation: Recorded By: Geo wrilling Company: wrilling Machine: wrilling Fluid: Remarks: Sample 2.0 to 21.0 feet, S 022 023 024 025	Helena, M Client: CH2M Hill Project: 20ORDINATES Jorthing: 852674.93 Easting: 1365638.29 Ground Elevation: 4118.92 Recorded By: George Metz wrilling Company: wrilling Machine: wrilling Fluid: Remarks: Sample 022 is a 2.0 to 21.0 feet, Sample 02 022 023 023 024 025	Helena, Monta Client: CH2M Hill Project: 2OORDINATES Northing: 852674.93 Easting: 1365638.29 Bround Elevation: 4118.92 Recorded By: George Metzger wrilling Company: wrilling Method: wrilling Fluid: Remarks: Sample 022 is a 5-gallo 2.0 to 21.0 feet, Sample 025 is a 1 022 Image: Structure of the sample 025 is a 1 023 Image: Structure of the sample	Helena, Montana Client: CH2M Hill Project: 2OORDINATES Northing: 852674.93 Easting: 1365638.29 Ground Elevation: 4118.92 Recorded By: George Metzger wrilling Company: wrilling Method: wrilling Fluid: Remarks: Sample 022 is a 5-gallon buck 2.0 to 21.0 feet, Sample 025 is a 5-gallon 022 Image: Sample 025 is a 5-gallon 022 Image: Sample 025 is a 5-gallon 023 Image: Sample 025 is a 5-gallon 023 Image: Sample 025 is a 5-gallon 024 Image: Sample 025 is a 5-gallon 025 Image: Sample 025 is a 5-gallon	Helena, Montana Client: CH2M Hill Project: COORDINATES Northing: 852674.93 Easting: 1365638.29 Sround Elevation: 4118.92 Recorded By: George Metzger wrilling Company: wrilling Company: wrilling Method: wrilling Machine: wrilling Fluid: Recorded To 21.0 feet, Sample 025 is a 5-gallon bucket from 2.0 to 21.0 feet, Sample 025 is a 5-gallon bucket Image: Strange open strang	Helena, Montana Client: CH2M Hill Project: 2OODINATES Jordina Stating: 1365638.29 Ground Elevation: 4118.92 tecorded By: George Metzger rrilling Company: rrilling Method: rrilling Fluid: Remarks: Sample 022 is a 5-gallon bucket from 0.0 to 2.0 to 21.0 feet, Sample 025 is a 5-gallon bucket from 3 022 023 023 024 024 025	Helena, Montana Client: CH2M Hill Project: 20ORDINATES Northing: 852674.93 33 Sasting: 1365638.29 37 Ground Elevation: 4118.92 tecorded By: George Metzger tecorded By: George Metzger Frilling Company: Iniling Method: Frilling Machine: trilling Fluid: Temarks: Sample 022 is a 5-gallon bucket from 0.0 to 3.5 feel 2.0 to 21.0 feet, Sample 025 is a 5-gallon bucket from 21.0 to Mathematical and the sample 025 is a 5-gallon bucket from 21.0 to Mathematical and the sample 025 is a 5-gallon bucket from 21.0 to Mathematical and the sample 025 is a 5-gallon bucket from 21.0 to O22 Image: Sample 025 is a 5-gallon bucket from 21.0 to O22 Image: Sample 025 is a 5-gallon bucket from 21.0 to O23 Image: Sample 025 is a 5-gallon bucket from 21.0 to O24 Image: Sample 025 is a 5-gallon bucket from 21.0 to O23 Image: Sample 025 is a 5-gallon bucket from 21.0 to O24 Image: Sample 025 is a 5-gallon bucket from 21.0 to O25 Image: Sample 025 is a 5-gallon bucket from 21.0 to	Helena, Montana Client: CH2M Hill Count Project: Prope 20ORDINATES Legal korthing: 852674.93 Locati asting: 1365638.29 3round Elevation: 4118.92 tecorded By: George Metzger rilling Company: rilling Company: rrilling Method: rilling Fluid: remarks: Sample 022 is a 5-gallon bucket from 0.0 to 3.5 feet. Sample 025 is a 5-gallon bucket from 21.0 to 26.0 feet. Image: state	Helena, Montana Client: CH2M Hill County: Lewis Project: Property Own 2OORDINATES Legal Descrip Northing: 852674.93 Statting: 1365638.29 Bround Elevation: 4118.92 tecorded By: George Metzger Iniling Company: Iniling Iniling Machine: Iniling Iniling Machine: Iniling Iniling Fluid: Iniling Machine: Imarks:: Sample 022 is a 5-gallon bucket from 0.0 to 3.5 feet. Sample 023 2.0 to 21.0 feet. Sample 025 is a 5-gallon bucket from 21.0 to 26.0 feet with n Imarks:: Sample 025 is a 5-gallon bucket from 21.0 to 26.0 feet with n Imarks:: Sample 025 is a 5-gallon bucket from 21.0 to 26.0 feet with n Imarks:: Sample 025 is a 5-gallon bucket from 21.0 to 26.0 feet with n Imarks:: Sample 025 is a 5-gallon bucket from 21.0 to 26.0 feet with n Imarks:: Sample 025 is a 5-gallon bucket from 21.0 to 26.0 feet with n Imarks:: Sample 025 is a 5-gallon bucket from 21.0 to 26.0 feet with n Imarks:: Imarks:: Imarks:: Imarks:: Imarks:: Imarks::	Helena, Montana Client: CH2M Hill County: Lewis and it Property Owner: MT Legal Description: Location Description: County: Lewis and it County: Eevis and it <td>Helena, Montana Client: CH2M Hill County: Lewis and Clark. Project: County: Lewis and Clark. SCORDINATES Location Description: TSN F Morthing: 852674.93 Location Description: Valiation: Valiatio: Valiatio: Valiation: Valiatio: Valiatio: Valiatio:</td> <td>Helena, Montana Zient: CH2M Hill County: Lewis and Clark Property Owner: MT Environmental Tr 200RDINATES Location Description: T9N R2W S8 Joording: S2574.33 Location Description: Valley View Lan iasting: 1365638.29 Sample Hamme Stround Elevation: 4118.92 Inner Rod Size / tecorded By: George Metzger Inner Rod Size / Inling: Hole Diameter (Internation of Size / Inling: Total Depth Drill Inling: Total Depth Drill Water Table Depth Drill Water Table Depth Drill Uo 21.0 feet, Sample 022 is a 5-gailon bucket from 0.0 to 3.5 feet, Sample 023 is a 5-gailon bucket from 21.0 to 28.0 feet with material greater than 3 in U22 U23 U24 U24 U24 U25 U24 U25 U24</td> <td>Determining Scientists and Engineers Helena, Montana Start: CH2M Hill County: Lewis and Clark Start: Montana Start: CH2M Hill County: Lewis and Clark Start: Montana Score Mark Expanded Mark Legid Description: TaN R2W S8 Score Mark County: Lewis and Clark Start: Montana Score Mark George Metzger Inner Rod Size (IPOD) Init: Hilling Company: Hale Diameter (In): Hale Diameter (In): Inling Method: Tatal Depth Direits (N): 28 Water Table Depth (II): Inling Method: Tatal Depth Direits (N): 28 Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Weight Coll and Score Metager Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Metabolis: Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Metabolis: Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Metabolis: Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Metabolis: Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet</td>	Helena, Montana Client: CH2M Hill County: Lewis and Clark. Project: County: Lewis and Clark. SCORDINATES Location Description: TSN F Morthing: 852674.93 Location Description: Valiation: Valiatio: Valiatio: Valiation: Valiatio: Valiatio: Valiatio:	Helena, Montana Zient: CH2M Hill County: Lewis and Clark Property Owner: MT Environmental Tr 200RDINATES Location Description: T9N R2W S8 Joording: S2574.33 Location Description: Valley View Lan iasting: 1365638.29 Sample Hamme Stround Elevation: 4118.92 Inner Rod Size / tecorded By: George Metzger Inner Rod Size / Inling: Hole Diameter (Internation of Size / Inling: Total Depth Drill Inling: Total Depth Drill Water Table Depth Drill Water Table Depth Drill Uo 21.0 feet, Sample 022 is a 5-gailon bucket from 0.0 to 3.5 feet, Sample 023 is a 5-gailon bucket from 21.0 to 28.0 feet with material greater than 3 in U22 U23 U24 U24 U24 U25 U24 U25 U24	Determining Scientists and Engineers Helena, Montana Start: CH2M Hill County: Lewis and Clark Start: Montana Start: CH2M Hill County: Lewis and Clark Start: Montana Score Mark Expanded Mark Legid Description: TaN R2W S8 Score Mark County: Lewis and Clark Start: Montana Score Mark George Metzger Inner Rod Size (IPOD) Init: Hilling Company: Hale Diameter (In): Hale Diameter (In): Inling Method: Tatal Depth Direits (N): 28 Water Table Depth (II): Inling Method: Tatal Depth Direits (N): 28 Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Weight Coll and Score Metager Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Metabolis: Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Metabolis: Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Metabolis: Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet with matchild greater than 3 inch diameter excluded. Utility Metabolis: Sample O22 is a 5-gailon bucket from 21.0 to 25 0 feet

			dro sulting ena, N			ric and E	S₇ Engin	In	C			~		Test Pit Log Hole Name: TP08 Date Hole Started: 7/2/2014 Date Hole Finished:	
F <u>C</u> N E	Project: OORDII orthing: asting:	H2M Hill	23 3.84						Prope Legal	Descript	er: M⁻ tion:	「Envi T9N I	ronmental Tr R2W S6 ley View Lan	State: Montana ust Group	11212014
	rilling Co riller: rilling Me rilling Ma rilling Flu	achine: uid:	-	_								Inn Hol Tot Wa	er Rod Size (e Diameter (i al Depth Drill ter Table De	in): led (ft): 24 pth (ft):	
		Sample		5-gallo	on buck	et from	0.0 to	10.0 fee	et, San	nple 027	' is a t	5-gallo	n bucket fror	n 13.0 to 24.0 feet with material greater than 3	inch
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
- - - - - - -	026										- - 5_ - -		Slightly mo	Fine Sand Dist, loose.	
											10 - - 15 -			' Sand tles past 18 feet, slightly moist, loose, plastic.	
	027										_ _ 20 _ _ _				
25											25			Sheet	1 of 1

			dre Sulting Ena, M			ric and E	S , Engin	In	C			*		Test Pit Log Hole Name: TP09 Date Hole Started: 7/2/2014 Date Hole Finished:	
P <u>C</u> N E	roject: OORDII orthing: asting:	H2M Hill	15 .96						Prope Legal	Descript	er: M ⁻ tion:	T Envi T9N I	ronmental Tr R2W S6 ley View Lan	State: Montana ust Group	
Dr Dr Dr Dr Dr	illing Co iller: illing Me illing Ma illing Flu	achine: uid:	-	_								Inn Hol Tot Wa	er Rod Size e Diameter (al Depth Drill ter Table De	in): led (ft): 25 pth (ft):	
R fro	emarks: om 19.0	: Sample to 23.0 fe	e 028 is a eet with n	5-gallo naterial	on buck greate	et from r than 3	0.0 to 5 inch d	10.0 fee liamete	et, San r exclu	nple 029 ded.	is a t	5-gallo	n bucket fror	n 10.0 to 19.0 feet, Sample 030 is a 5-gallon bu	ucket
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
- - 5 - -	028									Y	- - 5_ - -		0.0 - 10.0' Slightly mo	Fine Sand bist, loose.	
10 - - 15 - 15	029										10 - - 15 - -		10.0 - 19.0 Slightly mo	' Sand ore moist, loose.	
- - - - - - - - - - - - - - - - - - -	030										_ 20 _ _ _		22.0 - 25.0	oist, loose, green mottles.	
25											25				1 of 1

			dre sulting ena, M			ric and E	S , Engin	In	C.			~		Test Pit Log Hole Name: TP10 Date Hole Started: 7/2/2014 Date Hole Finished: 7	7/2/201/
F <u>C</u> N E	Project: CORDI Iorthing: asting:	H2M Hill <u>NATES</u> : 852634 1365718 Elevation:	.99 .59						Prope Legal	Descript	er: M⁻ tion:	ΓEnv T9N	ironmental Tr R2W S6 Iley View Lan	State: Montana ust Group	<u>1121201-</u>
Ri Di Di Di Di	ecordec rilling Co riller: rilling M rilling M rilling Fl	l By: Geo ompany: ethod: achine: uid:	orge Metz	ger								Inn Ho Tot Wa	er Rod Size le Diameter (tal Depth Dril ater Table De	n): ed (ft): 25 pth (ft):	
10	6.0 to 1		Sample 03	34 is a 5										7.5 to 15.0 feet, Sample 033 is a 5-gallon buck ch diameter excluded. Water observed in test p	
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
_ _ 5 _	031										- - 5_ -		0.0 - 7.5' Slightly mo	Sand bist, loose, red and gray lenses.	
- 10 	032										- 10 -		7.5 - 12.5' Some gray approxima	Sand /, slightly plastic, slightly moist, loose, tely 5%, 10 inches plus.	
- - _15 -											- - 15		12.5 - 16.0 Same with 16.0 - 17.0	little more gray and 12 inches plus material.	
- - _20 - -	033										- - 20 - - -		Gray lense seeped for 17.0 - 25.0	 sand is, wet, loose, water at 16 feet, perched this layer 5 minutes and stopped. Sandy Loam e, more plastic, green mottles, few red at bottom 	
- _25											_ 25				

						ric and E	S , Engin	In	C.			~		Test Pit Log Hole Name: TP11	
P <u>C</u> N E	Project: COORDII Iorthing: asting:	H2M Hill <u>NATES</u> 852777 1365758	.02		<u>ana</u>				Prope Legal	Descript	er: M ⁻ tion:	Γ Envi T9N I	ronmental Tr R2W S6 ley View Lan		: 7/2/2014
Re Dr Dr Dr Dr	ecorded	By: Geo ompany: ethod: achine:	4107.45									Inn Hol Tot	nple Hamme er Rod Size e Diameter (al Depth Drill ter Table De	n): ed (ft): 25	
9.	.0 to 13.	: Sample 0 feet, Sa leter exclu	ample 038	i 5-gallc 3 is a 5-	on buck -gallon	et from bucket	0.0 to from 1	4.0 feet 3.0 to 2	t, Sam 3.0 fee	ple 036 i et, Samp	s a 5- le 039	gallor 9 is a	bucket from 5-gallon buck	4.0 to 9.0 feet, Sample 037 is a 5-gallon buck tet from 23.0 to 25.0 feet with material greater	et from than 3
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
- -	035				<u> </u>								0.0 - 4.0' Slightly mo	Fine Sandy Loam bist, loose, plastic.	
- 5 - -	036										- 5_ - -		4.0 - 9.0' Slightly mo	Sand bist, loose, red mottles.	-
- 10 - -	037										- 10_ - -		9.0 - 13.0' Discontinu	Sand ous consolidated layers, loose, slightly moist.	-
- - - - - - - - - - - - - - - - - - -											- 15_ -		13.0 - 19.0 Slightly mo	' Sand ore moist, loose, plastic, few green mottles.	
- _ _20 -	038										- 20_ -			' Sand bove, 15% oversize.	-
- - _25	039										- - 25_			' Sandy Loam red, moist, loose.	-
- - 25											- - - 25_				-

		Hydrometrics, Inc. According Scientists and Engineers Helena, Montana												Test Pit Log				
						and E	Ingin	eers						Hole Name: TP12 Date Hole Started: 7/3/2014 Date Hole Finished:	7/3/2014			
Pr <u>CC</u> No Ea	oject: <u>DORDIN</u> orthing: sting:	12M Hill <u>IATES</u> 852917. 1365800.	64						Prope Legal	Descrip	er: Mī tion:	r Envi T9N I	ronmental Tr R2W S6 ley View Lan	State: Montana rust Group	151201-			
Dril Dril Dril Dril Dril	lling Co ller: lling Me lling Ma lling Flu	mpany: ethod: achine: iid:	orge Metz	_	n hugh	ot from	0.0 to	Sample Hammer Drop System: Inner Rod Size (ID/OD, in): Hole Diameter (in): Total Depth Drilled (ft): 25.5 Water Table Depth (ft): 9 4.0 feet, Sample 041 is a 5-gallon bucket from 4.0 to 14.5 feet, Sample 042 is a 5-gallon bucket from										
14.	.5 to 21	.5 feet, S	ample 04	13 is a {	5-gallon	bucke	t from 2	21.5 to 2	25.5 fe	et with r	nateri	al grea	ater than 3 in	ich diameter excluded.				
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION			
-	040												0.0 - 4.0' Slightly mo					
5 - - - 10	041										5 - - 10			Sandy Loam bist, loose, plastic, red mottles.				
- - - - - - - - - - - - - - - - - - -											_ _ 15			i' Sandy Loam ted, slightly moist.				
- 20 	042										- - 20 -			5' Sand with Gravel				
- 25 	043										- - 25_ -		Moist, loose.					
I				•					1	•	•	ļ	•	Sheet	1 of 1			

	Hydrometrics, Inc. According Scientists and Engineers Helena, Montana									Test Pit Log Hole Name: TP13 Date Hole Started: 7/3/2014 Date Hole Finished: 7	7/3/2014				
F <u>C</u> N E	Project: COORDI Iorthing: Easting:	H2M Hill	26 .2						Prope Legal	Descript	er: Mī tion:	ΓEnv T9N	ironmental Tr R2W S6 lley View Lan	State: Montana ust Group	10,2011
Recorded By: George Metzger Sample Hammer Drop System: Drilling Company: Inner Rod Size (ID/OD, in): Driller: Hole Diameter (in): Drilling Method: Total Depth Drilled (ft): 24 Drilling Machine: Water Table Depth (ft): Drilling Fluid: Depth Drilled (ft): 24															
Remarks: Sample 044 is a 5-gallon bucket from 0.0 to 3.0 feet, Sample 045 is a 5-gallon bucket from 3.0 to 9.0 feet, Sample 046 is a 5-gallon bucket from 9.0 to 24.0 feet with material greater than 3 inch diameter excluded.												from			
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION
- - 5 -	044 045							S			5		Loose, slig 3.0 - 9.0' Consolida	Sandy Loam htly moist. Sandy Loam ed, slightly moist, green mottles, small seep at 5 feet after 10 minutes.	
	046												striations.	e, plastic, few red and green mottles, few black	
25											25				1 of 1

	Hydrometrics, Inc. Consulting Scientists and Engineers Helena, Montana											Test Pit Log Hole Name: TP14 Date Hole Started: 7/3/2014 Date Hole Finished:					
<u>(</u> 1 1	Project: <u>COORDII</u> Northing: Easting:	ent: CH2M HillCounty: Lewis and ClarkState: Montanaject:Property Owner: MT Environmental Trust GroupORDINATESLegal Description: T9N R2W S6thing: 853113.27Location Description: Valley View Landfill Cell 4ting: 1365583.14und Elevation: 4092.13									//3/2014						
	Recorded Drilling Co Driller: Drilling Ma Drilling Ma Drilling Flu	ethod: achine:	orge Metz	ger					Sample Hammer Drop System: Inner Rod Size (ID/OD, in): Hole Diameter (in): Total Depth Drilled (ft): 24 Water Table Depth (ft):								
F	Remarks: 10.0 to 14	Sample I.0 feet, S	e 047 is a ample 05	5-gallo	on buck 5-gallor	et from 1 bucke	0.0 to t from	4.5 feet 14.0 to	t, Sam 24.0 fe	ple 048 i et with r	s a 5- nateri	gallor al grea	bucket from ater than 3 in	4.5 to 10.0 feet, Sample 049 is a 5-gallon buck ch diameter excluded.	et from		
DEPTH	SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION	PIEZOMETER COMPLETION		
-	047							C		S			0.0 - 4.5' Slightly mo				
5 - - - 10	048										5 - - - 10_			Sandy Loam onsolidated, slightly moist to moist.			
 _ _ 1!	049										-		10.0 - 14.0 Slightly mo				
- 1! - _ 2! - 2!	050										_ 15 _ _ 20 _		14.0 - 24.0 Moist, loos	' Sand e, red mottles.			
- - 2!	5										-						

	H) Cons Held	dr sulting ena, M	DM Scien	et ntists	ric and E	S , Engin	Ineers	C					Test Pit Log Hole Name: TP15 Date Hole Started: 7/3/2014 Date Hole Finished:				
Project: <u>COORD</u> Northing Easting:	CH2M Hill	.53						Prope Legal	Descript	er: M⊺ tion:	Γ Envi T9N I	R2W S6	State: Montana al Trust Group Landfill Cell 4				
Recorded By: George Metzger Sample Hammer Drop System: Drilling Company: Inner Rod Size (ID/OD, in): Driller: Hole Diameter (in): Drilling Method: Total Depth Drilled (ft): 26 Drilling Machine: Water Table Depth (ft): Drilling Fluid: Remarks: Sample 051 is a 5-gallon bucket from 0.0 to 4.5 feet, Sample 052 is a 5-gallon bucket from 4.5 to 21.0 feet, Sample 053 is a 5-gallon bucket from																	
	s: Sample 6.0 feet w								ple 052 i	s a 5-	gallor	bucket from	4.5 to 21.0 feet, Sample 053 is a 5-gallon buck	ket fron			
DEPTH SAMPLE NUMBER	SPT(N) BPF	(N1)60 BPF	RECOVERY (feet)	Qu (tsf) PENETROMETER	Cu (tsf) SHEAR VANE	nscs	DRY DENSITY (pcf)	PI (%)	MOISTURE CONTENT (%)		GRAPHICS	GEO	LOGICAL DESCRIPTION				
051												0.0 - 4.5' \$ Slightly mo	Silty Sand ist, partially consolidated.				
_5 10										5 - - 10		4.5 - 21.0' Green moti as depth in	tles, moist, loose, slightly more 12 inches plus				
052	052									- - 15_ -							
20										- - 20_ -			Sandy Silt ed, moist, sand and gravel pockets, very stiff.	-			
053										_ _ 25_							

Attachment C VVL Sample Summary Table

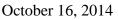
VVL SAMPLE SUMMARY TABLE

Sample	Test Pit	Depth	Estimated % >3"	% of 3" Minus Passing #200 Sieve	DBSA Composite Sample
VV-TP-13-001	TP01	0-4	15%	26%	
VV-TP-13-002	TP01	4-7.5	<5%	25%	
VV-TP-13-003	TP01	7.5-14	10%	8%	
VV-TP-13-004	TP01	14-22.5	15%	11%	
VV-TP-13-005	TP02	0-2.5	5%	19%	
VV-TP-13-006	TP02	2.5-8.5	<5%		
VV-TP-13-007	TP02	8.5-19	10%		
VV-TP-13-008	TP03	0-5.5	10%		
VV-TP-13-009	TP03	5.5-10	15%	23%	VVL Composite 21-30
VV-TP-13-010	TP03	10-14	<5%		
VV-TP-13-011	TP03	14-19	5%	9%	VVL Composite 0-10
VV-TP-13-012	TP03	19-23.5	5%		
VV-TP-13-013	TP04	0-5.5	10%	9%	VVL Composite 0-10
VV-TP-13-014	TP04	5.5-17.5	<2%	42%	
VV-TP-13-015	TP04	17.5-24.5	15%		
VV-TP-13-016	TP05	0-13	10%		
VV-TP-13-017	TP05	13-21	<2%		
VV-TP-13-018	TP05	21-25	10%		
VV-TP-13-019	TP06	0-5	5%	36%	VVL Composite 31+
VV-TP-13-020	TP06	5-17	10%	7%	VVL Composite 0-10
VV-TP-13-021	TP06	17-23	10%	16%	VVL Composite 16-20
VV-TP-13-022	TP07	0-3.5	0%		
VV-TP-13-023	TP07	3.5-12	10%		
VV-TP-13-024	TP07	12-21	10%	21%	VVL Composite 21-30
VV-TP-13-025	TP07	21-26	10%		++2_composite_21 50
VV-TP-13-026	TP08	0-10	<2%	30%	
VV-TP-13-027	TP08	13-24	5%	19%	VVL Composite 16-20
VV-TP-13-028	TP09	0-10	<2%	15%	VVL Composite 11-15
VV-TP-13-029	TP09	10-19	5%	10/0	
VV-TP-13-030	TP09	19-23	5%	20%	
VV-TP-13-031	TP10	0-7.5	10%	2070	VVL CompositeTP-10
VV-TP-13-032	TP10	7.5-15	15%		VVL CompositeTP-10
VV-TP-13-033	TP10	16-17	5%		
VV-TP-13-034	TP10	17-25	5%	14%	VVL CompositeTP-10
VV-TP-13-035	TP11	0-4	<2%	17/0	
VV-TP-13-036	TP11	4-9	10%	25%	
VV-TP-13-037	TP11	9-13	5%	28%	VVL Composite 21-30
VV-TP-13-038	TP11	13-23	10%	2070	, , L_Composite_21-50
VV-TP-13-039	TP11	23-25	<5%	56%	VVL Composite 31+
VV-TP-13-040	TP12	0-4	10%	50/0	
VV-TP-13-041	TP12	4-14.5	15%		VVL CompositeTP-12
VV-TP-13-041	TP12	14.5-21.5	<2%		VVL CompositeTP-12
VV-TP-13-042	TP12	21.5-25.5	10%	13%	VVL CompositeTP-12
VV-TP-13-044	TP13	0-3	5%	46%	vvi_compositerr-12
VV-TP-13-044	TP13	3-9	<2%	40%	VVL CompositeTP-13
VV-TP-13-043	TP13	9-24	15%	4//0	VVL_CompositeTP-13
VV-TP-13-046	TP13	0-4.5	5%	17%	VVL_Composite 16-20
VV-TP-13-047			<u> </u>	58%	vvL_Composite_10-20
	TP14 TP14	4.5-10		<u> </u>	
VV-TP-13-049		10-14	5%		WWI Composite 11.15
VV-TP-13-050	TP14	14-24	10%	14%	VVL_Composite_11-15
VV-TP-13-051	TP15	0-4.5	<2%	110/	VVI Commit 11.17
VV-TP-13-052	TP15	4.5-21	15%	11%	VVL_Composite_11-15
VV-TP-13-053	TP15	21-26	5%	43%	VVL_Composite_31+

Attachment D Daniel B Stephens & Associates Lab Report

Laboratory Report for

Hydrometrics, Inc.


VVL Composite Samples #12015

October 16, 2014

Daniel B. Stephens & Associates, Inc.

4400 Alameda Blvd. NE, Suite C • Albuquerque, New Mexico 87113

Mark Rhodes Hydrometrics, Inc. 3020 Bozeman Ave. Helena, MT 59601 (406) 443-4150

Re: DBS&A Laboratory Report for the Hydrometrics, Inc. Project: VVL Composite Samples PO#12015

Dear Mr. Rhodes:

Enclosed is the report for the Hydrometrics, Inc. Project: VVL Composite Samples PO#12015 samples. Please review this report and provide any comments as samples will be held for a maximum of 30 days. After 30 days samples will be returned or disposed of in an appropriate manner.

All testing results were evaluated subjectively for consistency and reasonableness, and the results appear to be reasonably representative of the material tested. However, DBS&A does not assume any responsibility for interpretations or analyses based on the data enclosed, nor can we guarantee that these data are fully representative of the undisturbed materials at the field site. We recommend that careful evaluation of these laboratory results be made for your particular application.

The testing utilized to generate the enclosed report employs methods that are standard for the industry. The results do not constitute a professional opinion by DBS&A, nor can the results affect any professional or expert opinions rendered with respect thereto by DBS&A. You have acknowledged that all the testing undertaken by us, and the report provided, constitutes mere test results using standardized methods, and cannot be used to disqualify DBS&A from rendering any professional or expert opinion, having waived any claim of conflict of interest by DBS&A.

We are pleased to provide this service to Hydrometrics, Inc. and look forward to future laboratory testing on other projects. If you have any questions about the enclosed data, please do not hesitate to call.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC. SOIL TESTING & RESEARCH LABORATORY

Hines Jolun.

Joleen Hines Laboratory Supervising Manager

Enclosure

Daniel B. Stephens & Associates, Inc. Soil Testing & Research Laboratory 4400 Alameda Blvd. NE, Suite C Albuquerque, NM 87113

505-889-7752 FAX 505-889-0258

Summaries

Summary of Tests Performed

				S	aturate	ed																
		itial S			lydraul						isture	•				Particl			ecific	Air		
Laboratory		operti			nductiv					Charac						Size ⁴			vity ⁵	Perm-	Atterberg	Proctor
Sample Number	G	VM	VD	СН	FH	FW	HC	PP	FP	DPP	RH	EP	WHC	K _{unsat}	DS	WS	Н	F	С	eability	Limits	Compaction
VVL Composite 0-10																х	х				х	х
VVL Composite 0-10 (85%, 1.46)	х	Х		х			х	Х		Х	х		Х	х								
VVL Composite 11-15																х	х				Х	х
VVL Composite 11-15 (85%, 1.50)	х	х		х	* * * *		х	Х		х	х		Х	Х								
VVL Composite 16-20										4						х	Х				Х	х
VVL Composite 16-20 (85%, 1.45)	х	х		Х			х	Х		x	х		Х	Х								
VVL Composite 21-30																х	х				Х	х
VVL Composite 21-30 (85%, 1.38)	х	Х		Х			х	X		x	x	1	Х	Х								
VVL Composite 31+																х	Х				Х	х
VVL Composite 31+ (85%, 1.22)	х	х		Х			×	Х		x	х		Х	Х								
VVL Composite TP-10																х	х				Х	Х
VVL Composite TP-10 (85%, 1.51)	х	Х		Х			×	Х		Х	х		Х	Х								
VVL Composite TP-12																х	Х				Х	Х
VVL Composite TP-12 (85%, 1.40)	х	Х		х			х	Х		Х	х		Х	Х								

¹ G = Gravimetric Moisture Content, VM = Volume Measurement Method, VD = Volume Displacement Method

² CH = Constant Head Rigid Wall, FH = Falling Head Rigid Wall, FW = Falling Head Rising Tail Flexible Wall

³ HC = Hanging Column, PP = Pressure Plate, FP = Filter Paper, DPP = Dew Point Potentiometer, RH = Relative Humidity Box,

EP = Effective Porosity, WHC = Water Holding Capacity, Kunsat = Calculated Unsaturated Hydraulic Conductivity

⁴ DS = Dry Sieve, WS = Wet Sieve, H = Hydrometer

^b F = Fine (<4.75mm), C = Coarse (>4.75mm)

Summary of Tests Performed (Continued)

Laboratory Sample Number	Pro	itial S operti VM	- <u>-</u>	⊦ Co	aturate lydrau nductiv FH	lic ⁄ity²	HC	PP	Chara		cs ³	WHC	K _{unsat}	Particl Size ⁴ WS		cific vity⁵ C	Air Perm- eability	Atterberg Limits	Proctor Compaction
VVL Composite TP-13														Х	Х			Х	Х
VVL Composite TP-13 (85%, 1.37)	х	Х		Х			х	Х	х	х		Х	х						
WB Borrow-1														Х	х			Х	Х
WB Borrow-1 (85%, 1.42)	х	Х		Х			х	Х	х	Х		Х	Х						
WB Stockpile-1														х	х			х	Х
WB Stockpile-1 (85%, 1.52)	х	Х		Х			х	Х	x	x		х	Х						
WB Stockpile-2														х	х			х	Х
WB Stockpile-2 (85%, 1.48)	х	Х		Х			х	X	x	х		Х	Х						
Topsoil-1														Х	х			Х	Х
Topsoil-1 (85%, 1.10)	х	Х		х			x	х	x	х		Х	Х						

¹ G = Gravimetric Moisture Content, VM = Volume Measurement Method, VD = Volume Displacement Method

² CH = Constant Head Rigid Wall, FH = Falling Head Rigid Wall, FW = Falling Head Rising Tail Flexible Wall

³ HC = Hanging Column, PP = Pressure Plate, FP = Filter Paper, DPP = Dew Point Potentiometer, RH = Relative Humidity Box,

EP = Effective Porosity, WHC = Water Holding Capacity, Kunsat = Calculated Unsaturated Hydraulic Conductivity

⁴ DS = Dry Sieve, WS = Wet Sieve, H = Hydrometer

^b F = Fine (<4.75mm), C = Coarse (>4.75mm)

Notes

Sample Receipt:

Twelve samples arrived, each in a full 5-gallon bucket sealed with a lid and tape, on August 7, 2014. Eight buckets of additional sample material arrived, each in a full 5-gallon bucket sealed with a lid and tape, on August 19, 2014.

Preparation and Testing Notes:

Each of the twelve samples were subjected to standard proctor compaction testing. Based on the proctor compaction test results, a sub-sample was prepared for each sample by remolding each material into a testing ring to target 85% of the respective maximum dry bulk density at 1% below the respective optimum moisture content. The actual percent of maximum density reached and dry bulk density achieved were added to each sub-sample ID. The remolded sub-samples were subjected to initial properties testing, saturated hydraulic conductivity testing, and the hanging column and pressure chamber portions of the moisture retention testing. Based on the standard proctor compaction method, material larger than 3/4" (19.0mm) or #4 (4.75mm), as appropriate, was removed from the sample material prior to compacting or remolding. Oversize correction calculations are presented if the fraction removed was greater than 5% of the bulk sample mass.

Remaining sample material was used for the particle size analysis, Atterberg limits testing, and the dewpoint potentiometer and relative humidity chamber portions of the moisture retention testing.

The reported volumetric moisture contents are adjusted for volume changes, when applicable. Due to the irregularities formed on the sample surfaces, volume measurements obtained after the initial reading should be considered estimates.

Porosity calculations, and the particle diameter calculations in the hydrometer portion of the particle size analysis testing, are based on the use of an assumed specific gravity value of 2.65.

Summary of Sample Preparation/Volume Changes

	Procto	r Data	Target Remold Parameters ¹			Actua	l Remold	Data		e Change Saturation	-		ne Chang rying Curv	_
	Opt. Moist. Cont.	Max. Dry Density	Moist. Cont.	Dry Bulk Density	% of Max. Density	Moist. Cont.	Dry Bulk Density	% of Max. Density	Dry Bulk Density	% Volume Change	% of Max. Density	Dry Bulk Density	% Volume Change	% of Max. Density
Sample Number	(%, g/g)	(g/cm ³)	(%, g/g)	(g/cm ³)	(%)	(%, g/g)	(g/cm ³)	(%)	(g/cm ³)	(%)	(%)	(g/cm ³)	(%)	(%)
VVL Composite 0-10 (85%, 1.46)	17.6	1.72	16.6	1.46	85%	16.5	1.46	85.0%	1.46		85.0%	1.46		85.0%
VVL Composite 11-15 (85%, 1.50)	15.0	1.76	14.0	1.50	85%	13.9	1.50	85.1%	1.50		85.1%	1.52	-1.2%	86.1%
VVL Composite 16-20 (85%, 1.45)	17.9	1.71	16.9	1.45	85%	17.1	1.45	85.1%	1.45		85.1%	1.45		85.1%
VVL Composite 21-30 (85%, 1.38)	19.5	1.62	18.5	1.38	85%	18.1	1.38	85.3%	1.38		85.3%	1.38		85.3%
VVL Composite 31+ (85%, 1.22)	27.5	1.44	26.5	1.22	85%	27.1	1.22	84.6%	1.22		84.6%	1.22		84.6%
VVL Composite TP-10 (85%, 1.51)	16.7	1.77	15.7	1.50	85%	15.7	1.51	85.1%	1.51		85.1%	1.59	-5.6%	90.1%
VVL Composite TP-12 (85%, 1.40)	19.5	1.65	18.5	1.40	85%	18.6	1.40	85.1%	1.40		85.1%	1.49	-5.6%	90.1%
VVL Composite TP-13 (85%, 1.37)	22.2	1.61	21.2	1.37	85%	21.1	1.37	85.4%	1.37		85.4%	1.35	1.8%	83.9%
WB Borrow-1 (85%, 1.42)	18.9	1.67	17.9	1.42	85%	18.3	1.42	84.8%	1.42		84.8%	1.42		84.8%
WB Stockpile-1 (85%, 1.52)	15.8	1.79	14.8	1.52	85%	14.8	1.52	84.7%	1.52		84.7%	1.52		84.7%
WB Stockpile-2 (85%, 1.48)	17.3	1.74	16.3	1.47	85%	16.6	1.48	85.3%	1.48		85.3%	1.48		85.3%
Topsoil-1 (85%, 1.10)	29.2	1.30	28.2	1.11	85%	28.7	1.10	84.7%	1.10		84.7%	1.10		84.7%

¹Target Remold Parameters: Provided by the client: 85% of maximum dry density at 1% below optimum moisture content.

²Volume Change Post Saturation: Volume change measurements were obtained after saturated hydraulic conductivity testing.

³Volume Change Post Drying Curve: Volume change measurements were obtained throughout hanging column and pressure plate testing. The 'Volume Change Post Drying Curve' values represent the final sample dimensions after the last pressure plate point.

Notes:

"+" indicates sample swelling, "-" indicates sample settling, and "---" indicates no volume change occurred.

		Moisture	Content				
		ceived	Remo		Dry Bulk	Wet Bulk	Calculated
	Gravimetric	Volumetric	Gravimetric	Volumetric	Density	Density	Porosity
Sample Number	(%, g/g)	(%, cm ³ /cm ³)	(%, g/g)	(%, cm ³ /cm ³)	(g/cm ³)	(g/cm ³)	(%)
VVL Composite 0-10 (85%, 1.46)	NA	NA	16.5	24.1	1.46	1.70	44.8
VVL Composite 11-15 (85%, 1.50)	NA	NA	13.9	20.9	1.50	1.71	43.4
VVL Composite 16-20 (85%, 1.45)	NA	NA	17.1	24.8	1.45	1.70	45.2
VVL Composite 21-30 (85%, 1.38)	NA	NA	18.1	25.1	1.38	1.64	47.7
VVL Composite 31+ (85%, 1.22)	NA	NA	27.1	33.0	1.22	1.55	54.0
VVL Composite TP-10 (85%, 1.51)	NA	NA	15.7	23.7	1.51	1.74	43.2
VVL Composite TP-12 (85%, 1.40)	NA	NA	18.6	26.1	1.40	1.66	47.1
VVL Composite TP-13 (85%, 1.37)	NA	NA	21.1	28.9	1.37	1.66	48.2
WB Borrow-1 (85%, 1.42)	NA	NA	18.3	26.0	1.42	1.68	46.4
WB Stockpile-1 (85%, 1.52)	NA	NA	14.8	22.4	1.52	1.74	42.8
WB Stockpile-2 (85%, 1.48)	NA	NA	16.6	24.5	1.48	1.72	44.2
Topsoil-1 (85%, 1.10)	NA	NA	28.7	31.7	1.10	1.42	58.4

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

--- = This sample was not remolded

Summary of Saturated Hydraulic Conductivity Tests

	K _{sat}	Oversize Corrected K _{sat}	Method of	Apolycic
Sample Number	(cm/sec)	(cm/sec)	Constant Head	Falling Head
VVL Composite 0-10 (85%, 1.46)	2.9E-04	2.2E-04	х	
VVL Composite 11-15 (85%, 1.50)	1.5E-03	1.2E-03	Х	
VVL Composite 16-20 (85%, 1.45)	5.3E-04	4.5E-04	Х	
VVL Composite 21-30 (85%, 1.38)	3.3E-04	2.6E-04	Х	
VVL Composite 31+ (85%, 1.22)	1.1E-04	9.5E-05	X	
VVL Composite TP-10 (85%, 1.51)	2.5E-03	2.0E-03	Х	
VVL Composite TP-12 (85%, 1.40)	1.2E-04	9.6E-05	Х	
VVL Composite TP-13 (85%, 1.37)	2.6E-04	2.3E-04	Х	
WB Borrow-1 (85%, 1.42)	5.0E-04	4.4E-04	Х	
WB Stockpile-1 (85%, 1.52)	4.1E-04	3.8E-04	Х	
WB Stockpile-2 (85%, 1.48)	4.9E-04	3.7E-04	Х	
Topsoil-1 (85%, 1.10)	4.4E-04		Х	

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

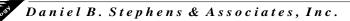
Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
VVL Composite 0-10 (85%, 1.46)	0	44.8
	13	44.7
	35	43.5
	105	38.7
	337	34.7
	17235	11.3
	70060	8.0
	215994	6.3
		4.6
	851293	4.0
VVL Composite 11-15 (85%, 1.50)	0	42.7
	8	42.7
	24	41.7
	77	34.1
	337	27.2 #
	15093	7.0 ##
	52010	5.4 ^{‡‡}
	460950	3.1 ^{‡‡}
	851293	3.0 ^{‡‡}
VVL Composite 16-20 (85%, 1.45)	0	47.2
	13	47.0
	35	44.1
	108	38.9
	337	34.7
	18968	11.1
	60066	8.8
	285136	6.1
	851293	4.3

Summary of Moisture Characteristics of the Initial Drainage Curve

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
VVL Composite 21-30 (85%, 1.38)	0	48.7
	12	48.7
	31	46.9
	104	41.3
	337	36.0
	9076	14.5
	41506	10.3
	164596	7.3
	851293	4.7
	001200	т.1
		>
VVL Composite 31+ (85%, 1.22)	0	57.2
···_ ··· ··· ··· (·····, ··)	12	57.2
	32	56.6
	93	51.8
	337	46.6
	19070	20.3
	52112	16.8
	449630	10.7
	851293	8.8
VVL Composite TP-10 (85%, 1.51)	0	43.3
	8	43.0
	21	41.7
	73	33.2 ^{‡‡}
	337	24.1 #
	13971	8.4 **
	54559	5.9 ^{‡‡}
	146545	4.8 ^{‡‡}
	851293	3.6 #

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)


^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
VVL Composite TP-12 (85%, 1.40)	0	46.7
	12	46.6
	32	46.2
	105	41.6
	337	36.9 #
	5303	17.7 #
	22742	14.1 #
	185502	9.4 ^{‡‡}
	851293	6.2 ^{‡‡}
VVL Composite TP-13 (85%, 1.37)	0	49.8
· · · · · · · · · · · · · · · · · · ·	13	49.3 **
	34	47.3 **
	103	42.1 ^{‡‡}
	337	38.1 #
	20090	13.5 #
	82196	10.1 #
	148381	8.7 #
	851293	5.7 ^{‡‡}
WB Borrow-1 (85%, 1.42)	0	46.7
	7	46.2
·	29	45.8
	102	37.7
	337	26.4
	23251	11.8
	67307	8.8
	220379	5.7
	851293	3.5
	001200	0.0

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
WB Stockpile-1 (85%, 1.52)	0	43.6
	8	43.6
	27	43.2
	91	38.5
	337	28.2
	32430	10.2
	164494	6.5
	510308	4.8
	851293	3.9
WB Stockpile-2 (85%, 1.48)	0	46.2
	8	46.1
	29	45.6
	91	37.2
	337	25.7
	24883	9.5
	64961	7.8
	285646	5.1
	851293	3.5
Topsoil-1 (85%, 1.10)	0	58.8
	9	58.2
Ť	30	58.0
	103	46.4
	337	32.9
	12646	12.6
	78729	8.5
	412101	5.6
	851293	4.3

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Moisture Retention (-1/3 Bar, -15 Bar, and Water Holding Capacity*)

					Oversize Correct	ted
	-1/3 Bar Point	-15 Bar Point	Water	-1/3 Bar Point	-15 Bar Point	Water
	Volumetric	Volumetric	Holding Capacity	Volumetric	Volumetric	Holding Capacity
Sample Number	(%, cm ³ /cm ³)					
VVL Composite 0-10						
(85%, 1.46)	34.7	12.2	22.5	29.8	10.5	19.4
VVL Composite 11-						
15 (85%, 1.50)	27.2	8.1	19.2	24.0	7.1	16.9
VVL Composite 16-						
20 (85%, 1.45)	34.7	12.6	22.1	31.7	11.5	20.2
VVL Composite 21-						
30 (85%, 1.38)	36.0	13.3	22.7	31.7	11.7	20.0
VVL Composite 31+						
(85%, 1.22)	46.6	21.5	25.0	43.8	20.2	23.6
VVL Composite TP-						
10 (85%, 1.51)	24.1	8.3	15.8	20.7	7.1	13.6
VVL Composite TP-				22 4	(0.0	40.0
12 (85%, 1.40)	36.9	14.6	22.2	32.4	12.9	19.6
VVL Composite TP-	00.4		00.0	05.4	44.0	04.4
13 (85%, 1.37)	38.1	15.1	23.0	35.4	14.0	21.4
WB Borrow-1 (85%,	00.4	44.0		04 5	10.0	44.0
1.42)	26.4	11.0	15.4	24.5	10.3	14.3
WB Stockpile-1 (85%, 1.52)	28.2	11.1	17.1	26.7	10.5	16.2
WB Stockpile-2	20.2	11.1	17.1	20.7	10.5	10.2
(85%, 1.48)	25.7	9.3	16.4	21.8	7.9	13.9
Topsoil-1 (85%,	23.1	9.0	10.4	21.0	1.5	10.8
1.10)	32.9	11.0	21.9			
1.10)	02.0	11.0	21.5			

*Water Holding Capacity (WHC) is defined here as the difference in the moisture content of the sample at -1/3 bar of water potential (commonly referred to as 'Field Capacity') and the moisture content of the sample at -15 bars of water potential (commonly referred to as 'Wilting Point').

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Summary of Particle Size Characteristics

Sample Number	d ₁₀ (mm)	d ₅₀ (mm)	d ₆₀ (mm)	C _u	C _c	Method	ASTM Classification	USDA Classification	
VVL Composite 0-10	0.00024	1.6	4.4	1.8E+04	50	WS/H	Clayey gravel with sand (GC)s	Sandy Clay Loam	† (Est)
VVL Composite 11-15	0.0069	1.1	3.4	493	2.1	WS/H	Silty sand with gravel (SM)g	Sandy Loam †	
VVL Composite 16-20	2.8E-05	0.81	4.2	1.5E+05	103	WS/H	Clayey gravel with sand (GC)s	Sandy Clay Loam	† (Est)
VVL Composite 21-30	0.00020	0.89	4.8	2.4E+04	9.2	WS/H	Clayey gravel with sand (GC)s	Sandy Clay Loam	† (Est)
VVL Composite 31+	2.3E-10	0.021	0.058	2.5E+08	5877	WS/H	Sandy fat clay with gravel s(CH)g	Clay [†]	(Est)
VVL Composite TP-10	0.0082	0.64	1.5	183	2.3	WS/H	Clayey sand with gravel (SC)g	Sandy Loam †	
VVL Composite TP-12	1.2E-06	0.63	1.9	1.6E+06	2274	WS/H	Clayey gravel with sand (GC)s	Sandy Clay Loam	† (Est)
VVL Composite TP-13	0.00038	0.49	1.1	2895	4.4	WS/H	Clayey sand with gravel (SC)g	Sandy Clay Loam	† (Est)
WB Borrow-1	0.0013	0.095	0.22	169	3.1	WS/H	Clayey sand (SC)	Sandy Loam †	(Est)
WB Stockpile-1	0.00028	0.035	0.063	225	9.6	WS/H	Sandy lean clay s(CL)	Loam [†]	(Est)
WB Stockpile-2	0.0011	0.091	0.31	282	2.0	WS/H	Clayey sand with gravel (SC)g	Loam [†]	(Est)
Topsoil-1	0.0036	0.047	0.070	19	1.3	WS/H	Sandy silt s(ML)	Loam	

d₅₀ = Median particle diameter

 $C_u = \frac{d_{60}}{d_{10}}$

DS = Dry sieve H = Hydrometer [†] Greater than 10% of sample is coarse material

Est = Reported values for d₁₀, C_u, C_c, and soil classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

 $C_{c} = \frac{(d_{30})^{2}}{(d_{10})(d_{60})}$

WS = Wet sieve

OPERATOR OF T

Daniel B. Stephens & Associates, Inc.

Percent Gravel, Sand, Silt and Clay*						
Sample Number	% Gravel (>4.75mm)	% Sand (<4.75mm, >0.075mm)	% Silt (<0.075mm, >0.002mm)	% Clay (<0.002mm)		
VVL Composite 0-10	39.3	35.6	11.4	13.7		
VVL Composite 11-15	37.8	42.0	12.7	7.5		
VVL Composite 16-20	39.6	32.3	14.7	13.4		
VVL Composite 21-30	40.1	31.0	13.4	15.5		
VVL Composite 31+	18.2	21.4	27.6	32.8		
VVL Composite TP-10	34.1	44.3	15.1	6.5		
VVL Composite TP-12	36.4	33.5	13.8	16.3		
VVL Composite TP-13	28.9	37.8	15.6	17.6		
WB Borrow-1	12.4	40.3	35.7	11.6		
WB Stockpile-1	8.7	29.1	46.9	15.3		
WB Stockpile-2	24.4	27.1	35.3	13.1		
Topsoil-1	0.4	37.9	53.6	8.0		

*USCS classification does not classify clay fraction based on particle size. USDA definition of clay (<0.002mm) used in this table.

Summary of Atterberg Tests

Sample Number	Liquid Limit	Plastic Limit	Plasticity Index	Classification
VVL Composite 0-10	75	25	50	СН
VVL Composite 11-15	33	27	6	ML
VVL Composite 16-20	54	24	30	СН
VVL Composite 21-30	68	25	43	СН
VVL Composite 31+	65	30	35	СН
VVL Composite TP-10	38	24	14	CL
VVL Composite TP-12	72	25	47	СН
VVL Composite TP-13	66	26	40	СН
WB Borrow-1	34	23	11	CL
WB Stockpile-1	31	19	12	CL
WB Stockpile-2	32	21	11	CL
Topsoil-1				ML

--- = Soil requires visual-manual classification due to non-plasticity

	Meas	sured	Oversize	Corrected
	Optimum Moisture Content	Maximum Dry Bulk Density	Optimum Moisture Content	Maximum Dry Bulk Density
Sample Number	(% g/g)	(g/cm ³)	(% g/g)	(g/cm ³)
VVL Composite 0-10	17.6	1.72	13.6	1.87
VVL Composite 11-15	15.0	1.76	12.2	1.88
VVL Composite 16-20	17.9	1.71	15.3	1.80
VVL Composite 21-30	19.5	1.62	15.5	1.76
VVL Composite 31+	27.5	1.44	24.2	1.52
VVL Composite TP-10	16.7	1.77	13.1	1.90
VVL Composite TP-12	19.5	1.65	15.7	1.78
VVL Composite TP-13	22.2	1.61	19.3	1.69
WB Borrow-1	18.9	1.67	16.6	1.75
WB Stockpile-1	15.8	1.79	14.4	1.84
WB Stockpile-2	17.3	1.74	13.0	1.89
Topsoil-1	29.2	1.30		

Summary of Proctor Compaction Tests

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

- NR = Not requested
- NA = Not applicable

	Moisture Content						
		ceived	Remo		Dry Bulk	Wet Bulk	Calculated
	Gravimetric	Volumetric	Gravimetric	Volumetric	Density	Density	Porosity
Sample Number	(%, g/g)	(%, cm ³ /cm ³)	(%, g/g)	(%, cm ³ /cm ³)	(g/cm ³)	(g/cm ³)	(%)
VVL Composite 0-10 (85%, 1.46)	NA	NA	16.5	24.1	1.46	1.70	44.8
VVL Composite 11-15 (85%, 1.50)	NA	NA	13.9	20.9	1.50	1.71	43.4
VVL Composite 16-20 (85%, 1.45)	NA	NA	17.1	24.8	1.45	1.70	45.2
VVL Composite 21-30 (85%, 1.38)	NA	NA	18.1	25.1	1.38	1.64	47.7
VVL Composite 31+ (85%, 1.22)	NA	NA	27.1	33.0	1.22	1.55	54.0
VVL Composite TP-10 (85%, 1.51)	NA	NA	15.7	23.7	1.51	1.74	43.2
VVL Composite TP-12 (85%, 1.40)	NA	NA	18.6	26.1	1.40	1.66	47.1
VVL Composite TP-13 (85%, 1.37)	NA	NA	21.1	28.9	1.37	1.66	48.2
WB Borrow-1 (85%, 1.42)	NA	NA	18.3	26.0	1.42	1.68	46.4
WB Stockpile-1 (85%, 1.52)	NA	NA	14.8	22.4	1.52	1.74	42.8
WB Stockpile-2 (85%, 1.48)	NA	NA	16.6	24.5	1.48	1.72	44.2
Topsoil-1 (85%, 1.10)	NA	NA	28.7	31.7	1.10	1.42	58.4

Summary of Initial Moisture Content, Dry Bulk Density Wet Bulk Density and Calculated Porosity

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 VVL Composite 0-10 VVL Composite Sam 12015	
	As Received	Remolded
Test Date:	NA	5-Sep-14
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g): Dry weight of sample (g):		3970.40 265.08 0.00 0.00 3181.06
Sample volume (cm ³): Assumed particle density (g/cm ³):		2175.34 2.65
		2.00
Gravimetric Moisture Content (% g/g):		16.5
Volumetric Moisture Content (% vol):		24.1
Dry bulk density (g/cm ³):		1.46
Wet bulk density (g/cm ³):		1.70
Calculated Porosity (% vol):		44.8
Percent Saturation:		53.8
Laboratory analysis by: Data entered by: Checked by:	D. (D'Dowd D'Dowd lines
Comments:		
* \\/ sight in aluding targe		

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 VVL Composite 11- VVL Composite Sa 12015	
	As Received	Remolded
Test Date:	NA	5-Sep-14
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):		4068.50 270.65 0.00 0.00
Dry weight of sample (g):		3332.92
Sample volume (cm ³): Assumed particle density (g/cm ³):		2220.20 2.65
		2.00
Gravimetric Moisture Content (% g/g):		13.9
Volumetric Moisture Content (% vol):		20.9
Dry bulk density (g/cm ³):		1.50
Wet bulk density (g/cm ³):		1.71
Calculated Porosity (% vol):		43.4
Percent Saturation:		48.3
Laboratory analysis by: Data entered by: Checked by:	D	. O'Dowd . O'Dowd Hines
Comments:		
+ \A/		

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 VVL Composite 16-2 VVL Composite Sam 12015	
	As Received	Remolded
Test Date:	NA	5-Sep-14
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):		3999.70 269.93 0.00 0.00
Dry weight of sample (g):		3186.29
Sample volume (cm ³): Assumed particle density (g/cm ³):		2194.77 2.65
Assumed particle density (grown).		2.00
Gravimetric Moisture Content (% g/g):		17.1
Volumetric Moisture Content (% vol):		24.8
Dry bulk density (g/cm ³):		1.45
Wet bulk density (g/cm ³):		1.70
Calculated Porosity (% vol):		45.2
Percent Saturation:		54.8
Laboratory analysis by: Data entered by: Checked by:	D. (D'Dowd D'Dowd lines
Comments:		
* \\/ aight in aluding targa		

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 VVL Composite 21-30 (85%, 1.3 VVL Composite Samples 12015	38)
	As Received Remolded	
Test Date:	NA 5-Sep-14	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):	3872.50 271.14 0.00 0.00	
Dry weight of sample (g):	3048.84	
Sample volume (cm ³): Assumed particle density (g/cm ³):	2201.91 2.65	
Assumed panicle density (grown).	2.03	
Gravimetric Moisture Content (% g/g):	18.1	
Volumetric Moisture Content (% vol):	25.1	
Dry bulk density (g/cm ³):	1.38	
Wet bulk density (g/cm ³):	1.64	
Calculated Porosity (% vol):	47.7	
Percent Saturation:	52.6	
Laboratory analysis by: Data entered by: Checked by:	D. O'Dowd D. O'Dowd J. Hines	
Comments:		
* Maight including targe		

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 VVL Composite 31+ (85%, 1.22) VVL Composite Samples 12015		
	As Received Remo	olded	
Test Date:	NA 28-Au	ug-14	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):	3705 272 0.0 0.0	.82)0	
Dry weight of sample (g) :	2700		
Sample volume (cm ³):	2217		
Assumed particle density (g/cm³):	2.6		
Gravimetric Moisture Content (% g/g):	27	.1	
Volumetric Moisture Content (% vol):	33	.0	
Dry bulk density (g/cm ³):	1.2	22	
Wet bulk density (g/cm ³):	1.5	55	
Calculated Porosity (% vol):	54	.0	
Percent Saturation:	61	.1	
Laboratory analysis by: Data entered by: Checked by:	D. O'Dov D. O'Dov J. Hines		
Comments:			
* Mainte in all all a standard			

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 VVL Composite TP-10 (85%, 1.51) VVL Composite Samples 12015
	As Received Remolded
Test Date:	NA 28-Aug-14
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):	4140.03 272.60 0.00 0.00
Dry weight of sample (g):	3342.18
Sample volume (cm ³):	2220.60
Assumed particle density (g/cm ³):	2.65
Gravimetric Moisture Content (% g/g):	15.7
Volumetric Moisture Content (% vol):	23.7
Dry bulk density (g/cm ³):	1.51
Wet bulk density (g/cm ³):	1.74
Calculated Porosity (% vol):	43.2
Percent Saturation:	54.7
Laboratory analysis by: Data entered by: Checked by:	D. O'Dowd D. O'Dowd J. Hines
Comments:	
* Weight including targe	

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 VVL Composite TP-12 (85%, 1.40) VVL Composite Samples 12015		
	As Received Remolded		
Test Date:	NA 28-Aug-14		
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):	3935.70 270.01 0.00 0.00		
Dry weight of sample (g):	3091.19		
Sample volume (cm ³):	2203.81		
Assumed particle density (g/cm ³):	2.65		
Gravimetric Moisture Content (% g/g):	18.6		
Volumetric Moisture Content (% vol):	26.1		
Dry bulk density (g/cm ³):	1.40		
Wet bulk density (g/cm ³):	1.66		
Calculated Porosity (% vol):	47.1		
Percent Saturation:	55.4		
Laboratory analysis by: Data entered by: Checked by:	D. O'Dowd D. O'Dowd J. Hines		
Comments:			
* Woight including toroo			

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 VVL Composite TP-13 (85%, 1.37) VVL Composite Samples 12015
	As Received Remolded
Test Date:	NA 5-Sep-14
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):	4012.10 275.53 0.00 0.00
Dry weight of sample (\underline{q}) :	3086.05
Sample volume (cm ³):	2250.16
Assumed particle density (g/cm ³):	2.65
Gravimetric Moisture Content (% g/g):	21.1
Volumetric Moisture Content (% vol):	28.9
Dry bulk density (g/cm ³):	1.37
Wet bulk density (g/cm ³):	1.66
Calculated Porosity (% vol):	48.2
Percent Saturation:	59.9
Laboratory analysis by: Data entered by: Checked by:	D. O'Dowd D. O'Dowd J. Hines
Comments:	
* Woight including torog	

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 WB Borrow-1 (85%, 1.42) VVL Composite Samples 12015		
	As Received	Remolded	
Test Date:	NA	28-Aug-14	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):		247.63 53.27 0.00 0.00	
Dry weight of sample (g) :		164.29	
Sample volume (cm ³):		115.77	
Assumed particle density (g/cm ³):		2.65	
Gravimetric Moisture Content (% g/g):		18.3	
Volumetric Moisture Content (% vol):		26.0	
Dry bulk density (g/cm ³):		1.42	
Wet bulk density (g/cm ³):		1.68	
Calculated Porosity (% vol):		46.4	
Percent Saturation:		55.9	
Laboratory analysis by: Data entered by: Checked by:	I	D. O'Dowd D. O'Dowd J. Hines	
Comments:			
* Woight including targe			

* Weight including tares

NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 WB Stockpile-1 (85%, 1.52) VVL Composite Samples 12015		
	As Received Remolded	<u>I</u>	
Test Date:	NA 28-Aug-14	ł	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):	263.07 55.22 0.00 0.00		
Dry weight of sample (g):	181.10		
Sample volume (cm ³):	119.42		
Assumed particle density (g/cm³):	2.65		
Gravimetric Moisture Content (% g/g):	14.8		
Volumetric Moisture Content (% vol):	22.4		
Dry bulk density (g/cm ³):	1.52		
Wet bulk density (g/cm ³):	1.74		
Calculated Porosity (% vol):	42.8		
Percent Saturation:	52.4		
Laboratory analysis by: Data entered by: Checked by:	D. O'Dowd D. O'Dowd J. Hines		
Comments:			
* Weight including torog			

* Weight including tares

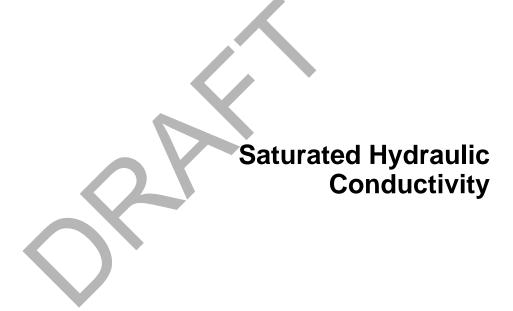
NA = Not analyzed

Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 WB Stockpile-2 (85%, 1.48) VVL Composite Samples 12015		
	As Received	Remolded	
Test Date:	NA	28-Aug-14	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):		267.66 72.21 0.00 0.00	
Dry weight of sample (g) :		167.66	
Sample volume (cm ³):		113.33	
Assumed particle density (g/cm ³):		2.65	
Gravimetric Moisture Content (% g/g):		16.6	
Volumetric Moisture Content (% vol):		24.5	
Dry bulk density (g/cm ³):		1.48	
Wet bulk density (g/cm ³):		1.72	
Calculated Porosity (% vol):		44.2	
Percent Saturation:		55.5	
Laboratory analysis by: Data entered by: Checked by:	Γ	D. O'Dowd D. O'Dowd I. Hines	
Comments:			
* Maight including to rea			

* Weight including tares

NA = Not analyzed



Data for Initial Moisture Content, Bulk Density, Porosity, and Percent Saturation

Job Number: Sample Number:	Hydrometrics, Inc. LB14.0168.00 Topsoil-1 (85%, 1.10) VVL Composite Samples 12015		
	As Received	Remolded	
Test Date:	NA	28-Aug-14	
Field weight* of sample (g): Tare weight, ring (g): Tare weight, pan/plate (g): Tare weight, other (g):		451.75 133.75 0.00 0.00	
Dry weight of sample (g):		247.04	
Sample volume (cm³): Assumed particle density (g/cm³):		224.14 2.65	
Gravimetric Moisture Content (% g/g):		28.7	
Volumetric Moisture Content (% vol):		31.7	
Dry bulk density (g/cm ³):		1.10	
Wet bulk density (g/cm ³):		1.42	
Calculated Porosity (% vol):		58.4	
Percent Saturation:		54.2	
Laboratory analysis by: Data entered by: Checked by:	Γ). O'Dowd). O'Dowd . Hines	
Comments:			
* Waight including taxas			

* Weight including tares

NA = Not analyzed

Summary of Saturated Hydraulic Conductivity Tests

	K _{sat}	Oversize Corrected K _{sat}	Method of	Apolycic
Sample Number	(cm/sec)	(cm/sec)	Constant Head	Falling Head
VVL Composite 0-10 (85%, 1.46)	2.9E-04	2.2E-04	Х	
VVL Composite 11-15 (85%, 1.50)	1.5E-03	1.2E-03	Х	
VVL Composite 16-20 (85%, 1.45)	5.3E-04	4.5E-04	Х	
VVL Composite 21-30 (85%, 1.38)	3.3E-04	2.6E-04	Х	
VVL Composite 31+ (85%, 1.22)	1.1E-04	9.5E-05	X	
VVL Composite TP-10 (85%, 1.51)	2.5E-03	2.0E-03	Х	
VVL Composite TP-12 (85%, 1.40)	1.2E-04	9.6E-05	Х	
VVL Composite TP-13 (85%, 1.37)	2.6E-04	2.3E-04	Х	
WB Borrow-1 (85%, 1.42)	5.0E-04	4.4E-04	Х	
WB Stockpile-1 (85%, 1.52)	4.1E-04	3.8E-04	Х	
WB Stockpile-2 (85%, 1.48)	4.9E-04	3.7E-04	Х	
Topsoil-1 (85%, 1.10)	4.4E-04		Х	

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

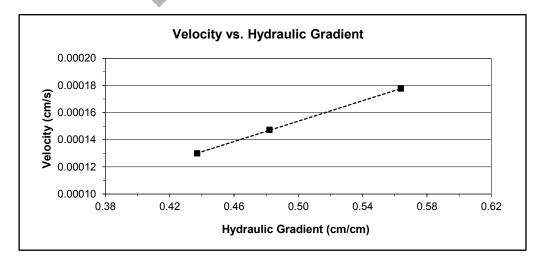
Saturated Hydraulic Conductivity Constant Head Method

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 0-10 (85%, 1.46) Project Name: VVL Composite Samples PO Number: 12015 *Type of water used:* TAP *Collection vessel tare* (g): 11.01

Sample length (cm): 12.24

Sample diameter (cm): 15.04

Sample x-sectional area (cm²): 177.75


Date	Time	Temp (°C)	Head (cm)	Q + Tare	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Dale	TIME	(\mathbf{U})	(CIII)	(g)			(CIII/SEC)	(CIII/SEC)
Test # 1:								
8-Sep-14	9:46:41	22.5	6.9	16.82	5.8	184	3.2E-04	3.0E-04
8-Sep-14	9:49:45							
•								
Test # 2:						*		
8-Sep-14	10:00:36	22.5	5.9	19.80	8.8	336	3.1E-04	2.9E-04
8-Sep-14	10:06:12							
•								
Test # 3:								
8-Sep-14	10:14:21	22.5	5.35	18.26	7.3	314	3.0E-04	2.8E-04
8-Sep-14	10:19:35							

Average Ksat (cm/sec): 2.9E-04

Oversize Corrected Ksat (cm/sec): 2.2E-04

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 0-10 (85%, 1.46)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4 Calculated Porosity of Fines (% vol): 44.8

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	22.66	77.34	100.00
Bulk Density (g/cm ³):	2.65	1.46	1.63
Volume of Solids (cm ³):	8.55	29.19	37.74
Volume of Voids (cm ³):	0.00	23.70	23.70
<i>Total Volume</i> (cm ³):	8.55	52.89	61.44
Volumetric Fraction (%):	13,91	86.09	100.00
Mass Fraction (%):	22.66	77.34	100.00
<i>Ksat</i> (cm/sec):	NM	2.9E-04	2.2E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

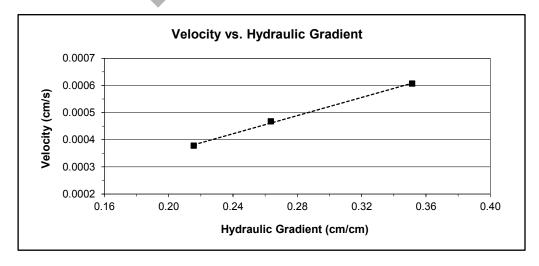
Saturated Hydraulic Conductivity Constant Head Method

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 11-15 (85%, 1.50) Project Name: VVL Composite Samples PO Number: 12015 Type of water used: TAP Collection vessel tare (g): 10.98

Sample length (cm): 12.52

Sample diameter (cm): 15.03

Sample x-sectional area (cm²): 177.37


		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1:								
8-Sep-14	9:45:30	22.5	4.4	29.83	18.9	191	1.6E-03	1.5E-03
8-Sep-14	9:48:41							
Test # 2:						*		
8-Sep-14	9:59:55	22.5	3.3	31.33	20.4	275	1.6E-03	1.5E-03
8-Sep-14	10:04:30							
Test # 3:								
8-Sep-14	10:14:00	22.5	2.7	28.07	17.1	294	1.5E-03	1.4E-03
8-Sep-14	10:18:54							

Average Ksat (cm/sec): 1.5E-03

Oversize Corrected Ksat (cm/sec): 1.2E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 11-15 (85%, 1.50)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4 Calculated Porosity of Fines (% vol): 43.4

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	18.97	81.03	100.00
Bulk Density (g/cm ³):	2.65	1.50	1.64
Volume of Solids (cm ³):	7.16	30.58	37.74
Volume of Voids (cm ³):	0.00	23.40	23.40
<i>Total Volume</i> (cm ³):	7.16	53.98	61.14
Volumetric Fraction (%):	11,71	88.29	100.00
Mass Fraction (%):	18.97	81.03	100.00
<i>Ksat</i> (cm/sec):	NM	1.5E-03	1.2E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

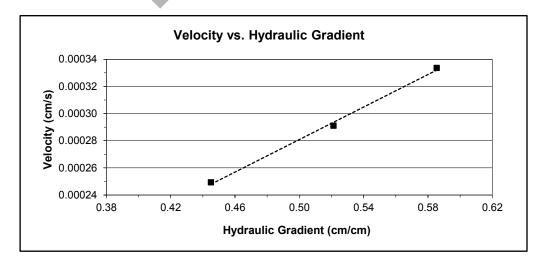
Saturated Hydraulic Conductivity Constant Head Method

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 16-20 (85%, 1.45) Project Name: VVL Composite Samples PO Number: 12015 *Type of water used:* TAP *Collection vessel tare* (g): 11.00

Sample length (cm): 12.47

Sample diameter (cm): 14.97

Sample x-sectional area (cm²): 176.03


		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1:								
8-Sep-14	9:46:14	22.5	7.3	20.98	10.0	170	5.7E-04	5.4E-04
8-Sep-14	9:49:04							
Test # 2:						Ť		
8-Sep-14	10:00:04	22.5	6.5	28.67	17.7	345	5.6E-04	5.3E-04
8-Sep-14	10:05:49							
•								
Test # 3:								
8-Sep-14	10:14:12	22.5	5.55	24.29	13.3	303	5.6E-04	5.3E-04
8-Sep-14	10:19:15							
- 1-								

Average Ksat (cm/sec): 5.3E-04

Oversize Corrected Ksat (cm/sec): 4.5E-04

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 16-20 (85%, 1.45)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4 Calculated Porosity of Fines (% vol): 45.2

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	14.48	85.52	100.00
Bulk Density (g/cm ³):	2.65	1.45	1.55
Volume of Solids (cm ³):	5.46	32.27	37.74
Volume of Voids (cm ³):	0.00	26.64	26.64
<i>Total Volume</i> (cm ³):	5.46	58.91	64.37
Volumetric Fraction (%):	8.49	91.51	100.00
Mass Fraction (%):	14.48	85.52	100.00
<i>Ksat</i> (cm/sec):	NM	5.3E-04	4.5E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

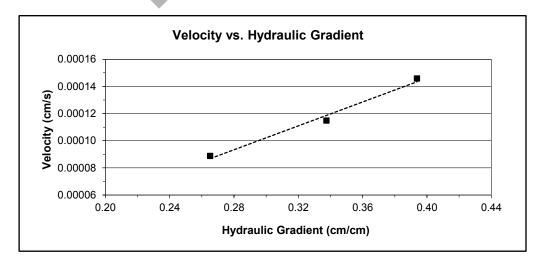
Saturated Hydraulic Conductivity Constant Head Method

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 21-30 (85%, 1.38) Project Name: VVL Composite Samples PO Number: 12015 *Type of water used:* TAP *Collection vessel tare* (g): 11.02

Sample length (cm): 12.44

Sample diameter (cm): 15.01

Sample x-sectional area (cm²): 176.97


	-	Temp	Head	Q + Tare	Q (³)	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1:								
8-Sep-14	9:45:03	22.5	4.9	15.12	4.1	159	3.7E-04	3.5E-04
8-Sep-14	9:47:42							
Test # 2:								
8-Sep-14	9:59:33	22.5	4.2	17.60	6.6	324	3.4E-04	3.2E-04
8-Sep-14	10:04:57							
Test # 3:					i			
8-Sep-14	10:13:33	22.5	3.3	15.27	4.3	271	3.3E-04	3.2E-04
8-Sep-14	10:18:04							
-								

Average Ksat (cm/sec): 3.3E-04

Oversize Corrected Ksat (cm/sec): 2.6E-04

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 21-30 (85%, 1.38)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4 Calculated Porosity of Fines (% vol): 47.7

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	20.52	79.48	100.00
Bulk Density (g/cm ³):	2.65	1.38	1.54
Volume of Solids (cm ³):	7.74	29.99	37.74
Volume of Voids (cm ³):	0.00	27.41	27.41
<i>Total Volume</i> (cm ³):	7.74	57.40	65.14
Volumetric Fraction (%):	11.89	88.11	100.00
Mass Fraction (%):	20.52	79.48	100.00
Ksat (cm/sec):	NM	3.3E-04	2.6E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

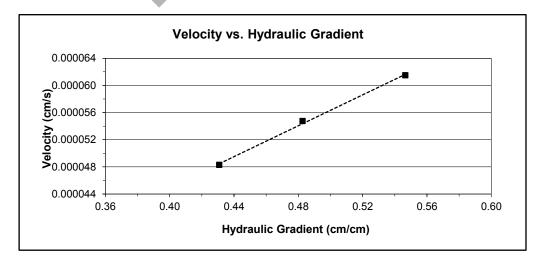
NM = Not measured

Saturated Hydraulic Conductivity Constant Head Method

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 31+ (85%, 1.22) Project Name: VVL Composite Samples PO Number: 12015 Type of water used: TAP Collection vessel tare (g): 10.95 Sample length (cm): 12.53

Sample diameter (cm): 15.01

Sample x-sectional area (cm²): 176.93


		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1: 2-Sep-14	12:56:59	22.0	6.85	12.81	1.9	171	1.1E-04	1.1E-04
2-Sep-14	12:59:50							
Test # 2:								
2-Sep-14	13:16:30	22.0	6.05	12.80	1.9	191	1.1E-04	1.1E-04
2-Sep-14	13:19:41							
Test # 3:								
2-Sep-14	13:30:14	22.0	5.4	12.53	1.6	185	1.1E-04	1.1E-04
2-Sep-14	13:33:19							

Average Ksat (cm/sec): 1.1E-04

Oversize Corrected Ksat (cm/sec): 9.5E-05

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 31+ (85%, 1.22)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4 Calculated Porosity of Fines (% vol): 54.0

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	12.02	87.98	100.00
Bulk Density (g/cm ³):	2.65	1.22	1.30
Volume of Solids (cm ³):	4.54	33.20	37.74
Volume of Voids (cm ³):	0.00	39.04	39.04
<i>Total Volume</i> (cm ³):	4.54	72.24	76.78
Volumetric Fraction (%):	5.91	94.09	100.00
Mass Fraction (%):	12.02	87.98	100.00
<i>Ksat</i> (cm/sec):	NM	1.1E-04	9.5E-05

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

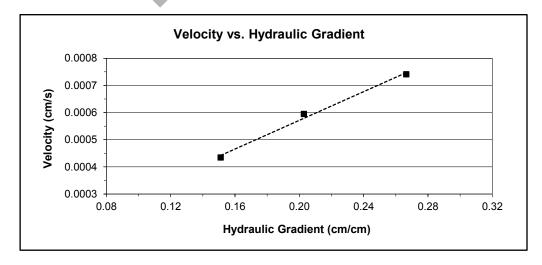
Saturated Hydraulic Conductivity Constant Head Method

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-10 (85%, 1.51) Project Name: VVL Composite Samples PO Number: 12015 Type of water used: TAP Collection vessel tare (g): 10.98

Sample length (cm): 12.57

Sample diameter (cm): 15.00

Sample x-sectional area (cm²): 176.71


Dete	Time	Temp	Head	Q + Tare	Q (am ³)	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1:	12:55:00	22.0	3.35	18.30	7.3	60	2.6E-03	2.5E-03
2-Sep-14 2-Sep-14	12:55:00	22.0	3.35	10.30	7.5	00	2.0E-03	2.5E-05
Test # 2:								
2-Sep-14	13:16:00	22.0	2.55	16.75	5.8	60	2.7E-03	2.6E-03
2-Sep-14	13:17:00							
Test # 3:								
2-Sep-14	13:30:00	22.0	1.9	15.05	4.1	60	2.5E-03	2.4E-03
2-Sep-14	13:31:00							

Average Ksat (cm/sec): 2.5E-03

Oversize Corrected Ksat (cm/sec): 2.0E-03

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-10 (85%, 1.51)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4 Calculated Porosity of Fines (% vol): 43.2

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	21.58	78.42	100.00
Bulk Density (g/cm ³):	2.65	1.51	1.66
Volume of Solids (cm ³):	8.14	29.59	37.74
Volume of Voids (cm ³):	0.00	22.51	22.51
<i>Total Volume</i> (cm ³):	8.14	52.10	60.25
Volumetric Fraction (%):	13.52	86.48	100.00
Mass Fraction (%):	21.58	78.42	100.00
<i>Ksat</i> (cm/sec):	NM	2.5E-03	2.0E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

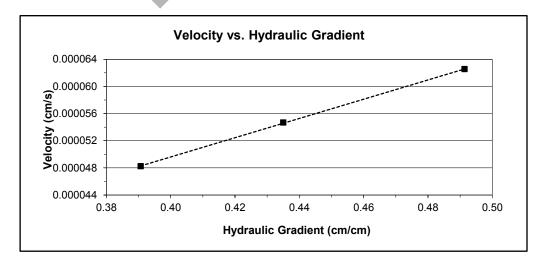
Saturated Hydraulic Conductivity Constant Head Method

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-12 (85%, 1.40) Project Name: VVL Composite Samples PO Number: 12015 *Type of water used:* TAP *Collection vessel tare* (g): 10.96

Sample length (cm): 12.41

Sample diameter (cm): 15.04

Sample x-sectional area (cm²): 177.54


		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1:								
2-Sep-14	12:56:44	22.0	6.1	12.77	1.8	163	1.3E-04	1.2E-04
2-Sep-14	12:59:27							
Test # 2:						¥.		
2-Sep-14	13:16:18	22.0	5.4	12.61	1.7	170	1.3E-04	1.2E-04
2-Sep-14	13:19:08							
•								
Test # 3:								
2-Sep-14	13:30:04	22.0	4.85	12.39	1.4	167	1.2E-04	1.2E-04
2-Sep-14	13:32:51							
- 1-	_							

Average Ksat (cm/sec): 1.2E-04

Oversize Corrected Ksat (cm/sec): 9.6E-05

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-12 (85%, 1.40)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

Calculated Porosity of Fines (% vol): 47.1

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	19.61	80.39	100.00
Bulk Density (g/cm ³):	2.65	1.40	1.55
Volume of Solids (cm ³):	7.40	30.33	37.74
Volume of Voids (cm ³):	0.00	26.98	26.98
<i>Total Volume</i> (cm ³):	7.40	57.31	64.71
Volumetric Fraction (%):	11,44	88.56	100.00
Mass Fraction (%):	19.61	80.39	100.00
Ksat (cm/sec):	NM	1.2E-04	9.6E-05

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

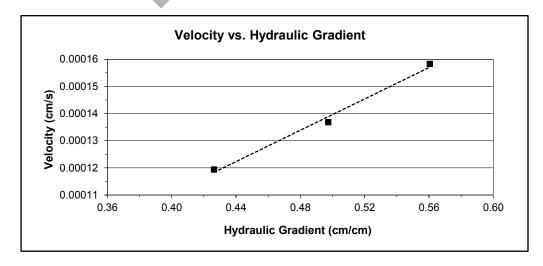
Saturated Hydraulic Conductivity Constant Head Method

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-13 (85%, 1.37) Project Name: VVL Composite Samples PO Number: 12015 *Type of water used:* TAP *Collection vessel tare* (g): 11.02

Sample length (cm): 12.66

Sample diameter (cm): 15.04

Sample x-sectional area (cm²): 177.68


		Temp	Head	Q + Tare	Q	Elapsed	Ksat	Ksat @ 20°C
Date	Time	(°C)	(cm)	(g)	(cm ³)	time (sec)	(cm/sec)	(cm/sec)
Test # 1:								
8-Sep-14	9:45:13	22.5	7.1	15.94	4.9	175	2.8E-04	2.7E-04
8-Sep-14	9:48:08							
Test # 2:						Ť		
8-Sep-14	9:59:43	22.5	6.3	19.26	8.2	339	2.7E-04	2.6E-04
8-Sep-14	10:05:22							
Test # 3:					i			
8-Sep-14	10:13:41	22.5	5.4	17.19	6.2	291	2.8E-04	2.6E-04
8-Sep-14	10:18:32							

Average Ksat (cm/sec): 2.6E-04

Oversize Corrected Ksat (cm/sec): 2.3E-04

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-13 (85%, 1.37)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4 Calculated Porosity of Fines (% vol): 48.2

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	13.14	86.86	100.00
Bulk Density (g/cm ³):	2.65	1.37	1.46
Volume of Solids (cm ³):	4.96	32.78	37.74
Volume of Voids (cm ³):	0.00	30.56	30.56
<i>Total Volume</i> (cm ³):	4.96	63.33	68.29
Volumetric Fraction (%):	7,26	92.74	100.00
Mass Fraction (%):	13.14	86.86	100.00
<i>Ksat</i> (cm/sec):	NM	2.6E-04	2.3E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Saturated Hydraulic Conductivity Constant Head Method

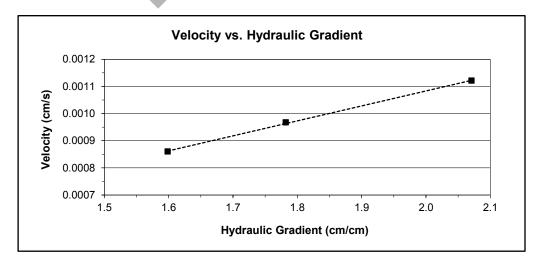
Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Borrow-1 (85%, 1.42) Project Name: VVL Composite Samples PO Number: 12015 Type of water used: TAP

Collection vessel tare (g): 11.02

Sample length (cm): 3.81

Sample diameter (cm): 6.22

Sample x-sectional area (cm²): 30.39


Date	Time	Temp (°C)	Head (cm)	Q + Tare	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Dale	Time	(\mathbf{U})	(CIII)	(g)		line (sec)	(CIII/SEC)	(CITI/SEC)
Test # 1:								
2-Sep-14	12:57:19	22.0	7.7	17.27	6.3	192	5.3E-04	5.1E-04
2-Sep-14	13:00:31							
Test # 2:								
2-Sep-14	13:17:25	22.0	6.6	16.37	5.4	192	5.3E-04	5.1E-04
2-Sep-14	13:20:37							
Test # 3:								
2-Sep-14	13:30:33	22.0	5.9	16.68	5.7	230	5.2E-04	5.0E-04
2-Sep-14	13:34:23							

Average Ksat (cm/sec): 5.0E-04

Oversize Corrected Ksat (cm/sec): 4.4E-04

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Borrow-1 (85%, 1.42)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): #4 Calculated Porosity of Fines (% vol): 46.4

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	12.36	87.64	100.00
Bulk Density (g/cm ³):	2.65	1.42	1.51
Volume of Solids (cm ³):	4.66	33.07	37.74
Volume of Voids (cm ³):	0.00	28.68	28.68
<i>Total Volume</i> (cm ³):	4.66	61.76	66.42
Volumetric Fraction (%):	7.02	92.98	100.00
Mass Fraction (%):	12.36	87.64	100.00
<i>Ksat</i> (cm/sec):	NM	5.0E-04	4.4E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Saturated Hydraulic Conductivity Constant Head Method

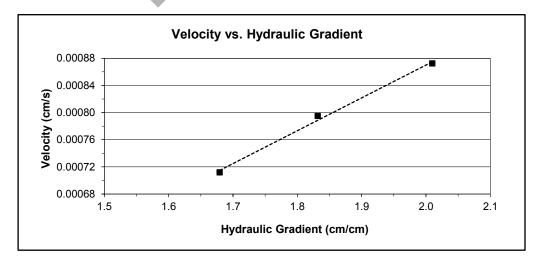
Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Stockpile-1 (85%, 1.52) Project Name: VVL Composite Samples PO Number: 12015 Type of water used: TAP

Collection vessel tare (g): 11.02

Sample length (cm): 3.93

Sample diameter (cm): 6.22

Sample x-sectional area (cm²): 30.39


Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Date	TIME	(0)	(CIII)	(9)			(011/300)	(011/300)
Test # 1:								
2-Sep-14	12:57:58	22.0	7.9	16.40	5.4	203	4.3E-04	4.1E-04
2-Sep-14	13:01:21							
· ·								
Test # 2:						•		
2-Sep-14	13:17:43	22.0	7.2	16.60	5.6	231	4.3E-04	4.1E-04
2-Sep-14	13:21:34							
F								
Test # 3:								
2-Sep-14	13:30:54	22.0	6.6	16.62	5.6	259	4.2E-04	4.0E-04
2-Sep-14	13:35:13							
= 000 11								

Average Ksat (cm/sec): 4.1E-04

Oversize Corrected Ksat (cm/sec): 3.8E-04

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Split (3/4", 3/8", #4): #4 Calculated Porosity of Fines (% vol): 42.8

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	8.73	91.27	100.00
Bulk Density (g/cm ³):	2.65	1.52	1.58
Volume of Solids (cm ³):	3.30	34.44	37.74
Volume of Voids (cm ³):	0.00	25.74	25.74
<i>Total Volume</i> (cm ³):	3.30	60.18	63.48
Volumetric Fraction (%):	5.19	94.81	100.00
Mass Fraction (%):	8.73	91.27	100.00
<i>Ksat</i> (cm/sec):	NM	4.1E-04	3.8E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Saturated Hydraulic Conductivity Constant Head Method

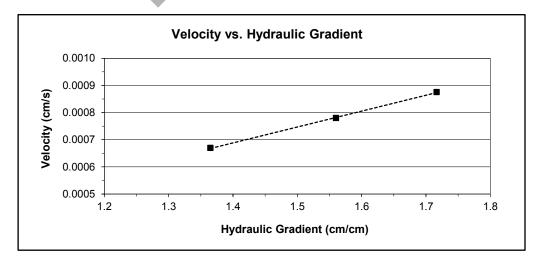
Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Stockpile-2 (85%, 1.48) Project Name: VVL Composite Samples PO Number: 12015 Type of water used: TAP

Collection vessel tare (g): 11.03

Sample length (cm): 3.84

Sample diameter (cm): 6.13

Sample x-sectional area (cm²): 29.51


Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
		(0)	(011)	(9)	(0117)		(011/000)	(011/300)
Test # 1:								
2-Sep-14	12:57:45	22.0	6.4	15.86	4.8	187	5.3E-04	5.0E-04
2-Sep-14	13:00:52							
•								
Test # 2:						•		
2-Sep-14	13:17:36	22.0	5.8	15.77	4.7	206	5.2E-04	4.9E-04
2-Sep-14	13:21:02							
Test # 3:								
2-Sep-14	13:30:43	22.0	5.05	15.71	4.7	237	5.1E-04	4.9E-04
2-Sep-14	13:34:40							

Average Ksat (cm/sec): 4.9E-04

Oversize Corrected Ksat (cm/sec): 3.7E-04

Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Oversize Correction Data Sheet

Split (3/4", 3/8", #4): #4 Calculated Porosity of Fines (% vol): 44.2

	Coarse Fraction*	Fines Fraction	<u>Composite</u>
Subsample Mass (g):	24.42	75.58	100.00
Bulk Density (g/cm ³):	2.65	1.48	1.66
Volume of Solids (cm ³):	9.21	28.52	37.74
Volume of Voids (cm ³):	0.00	22.57	22.57
<i>Total Volume</i> (cm ³):	9.21	51.09	60.30
Volumetric Fraction (%):	15.28	84.72	100.00
Mass Fraction (%):	24.42	75.58	100.00
<i>Ksat</i> (cm/sec):	NM	4.9E-04	3.7E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NM = Not measured

Saturated Hydraulic Conductivity Constant Head Method

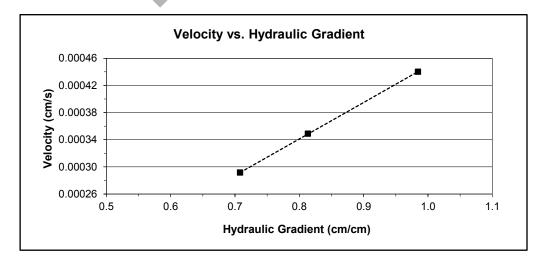
Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: Topsoil-1 (85%, 1.10) Project Name: VVL Composite Samples PO Number: 12015 Type of water used: TAP

Collection vessel tare (g): 10.94

Sample length (cm): 7.60

Sample diameter (cm): 6.13

Sample x-sectional area (cm²): 29.50

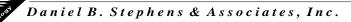

Date	Time	Temp (°C)	Head (cm)	Q + Tare (g)	Q (cm ³)	Elapsed time (sec)	Ksat (cm/sec)	Ksat @ 20°C (cm/sec)
Test # 1:		(-)	(011)	(3/			(0	(0
2-Sep-14	12:57:11	22.0	7.1	13.29	2.4	181	4.7E-04	4.5E-04
2-Sep-14	13:00:12							
Test # 2:								
2-Sep-14	13:16:44	22.0	5.8	13.08	2.1	208	4.6E-04	4.4E-04
2-Sep-14	13:20:12							
Test # 3:								
2-Sep-14	13:30:24	22.0	5	12.66	1.7	200	4.4E-04	4.2E-04
2-Sep-14	13:33:44							

Average Ksat (cm/sec): 4.4E-04

Oversize Corrected Ksat (cm/sec): -

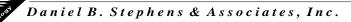
Comments:

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass


Moisture Retention Characteristics

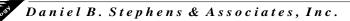
Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
VVL Composite 0-10 (85%, 1.46)	0	44.8
	13	44.7
	35	43.5
	105	38.7
	337	34.7
	17235	11.3
	70060	8.0
	215994	6.3
	851293	4.6
	001200	
VVL Composite 11-15 (85%, 1.50)	0	42.7
	8	42.7
	24	41.7
	77	34.1
	337	27.2 #
	15093	7.0 #
	52010	5.4 ^{‡‡}
	460950	3.1 #
	851293	3.0 #
VVL Composite 16-20 (85%, 1.45)	0	47.2
	13	47.0
Ť	35	44.1
	108	38.9
	337	34.7
	18968	11.1
	60066	8.8
	285136	6.1
	851293	4.3

Summary of Moisture Characteristics of the Initial Drainage Curve


^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

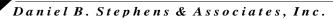
Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
VVL Composite 21-30 (85%, 1.38)	0	48.7
	12	48.7
	31	46.9
	104	41.3
	337	36.0
	9076	14.5
	41506	10.3
	164596	7.3
	851293	4.7
	001200	т.1
		>
VVL Composite 31+ (85%, 1.22)	0	57.2
···_ ··· ··· ··· (·····, ··)	12	57.2
	32	56.6
	93	51.8
	337	46.6
	19070	20.3
	52112	16.8
	449630	10.7
	851293	8.8
VVL Composite TP-10 (85%, 1.51)	0	43.3
	8	43.0
	21	41.7
	73	33.2 ^{‡‡}
	337	24.1 #
	13971	8.4 **
	54559	5.9 ^{‡‡}
	146545	4.8 ^{‡‡}
	851293	3.6 #

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)


^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Sample Number	Pressure Head (-cm water)	Moisture Content (%, cm ³ /cm ³)
VVL Composite TP-12 (85%, 1.40)	0	46.7
	12	46.6
	32	46.2
	105	41.6
	337	36.9 #
	5303	17.7 #
	22742	14.1 ^{‡‡}
	185502	9.4 ^{‡‡}
	851293	6.2 ^{‡‡}
VVL Composite TP-13 (85%, 1.37)	0	49.8
	13	49.3 ^{‡‡}
	34	47.3 #
	103	42.1 ^{‡‡}
	337	38.1 #
	20090	13.5 #
	82196	10.1 ^{‡‡}
	148381	8.7 ^{‡‡}
	851293	5.7 #
WB Borrow-1 (85%, 1,42)	0	46.7
	7	46.2
¥.	29	45.8
	102	37.7
	337	26.4
	23251	11.8
	67307	8.8
	220379	5.7
	851293	3.5

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)


^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

	Pressure Head	Moisture Content
Sample Number	(-cm water)	(%, cm ³ /cm ³)
WB Stockpile-1 (85%, 1.52)	0	43.6
	8	43.6
	27	43.2
	91	38.5
	337	28.2
	32430	10.2
	164494	6.5
	510308	4.8
	851293	3.9
WB Stockpile-2 (85%, 1.48)	0	46.2
	8	46.1
	29	45.6
	91	37.2
	337	25.7
	24883	9.5
	64961	7.8
	285646	5.1
	851293	3.5
Topsoil-1 (85%, 1.10)	0	58.8
	9	58.2
Ť	30	58.0
	103	46.4
	337	32.9
	12646	12.6
	78729	8.5
	412101	5.6
	851293	4.3

Summary of Moisture Characteristics of the Initial Drainage Curve (Continued)

^{‡‡} Volume adjustments are applicable at this matric potential (see data sheet for this sample).

Summary of Calculated Unsaturated Hydraulic Properties

					Oversize	Corrected
Sample Number	α (cm ⁻¹)	N (dimensionless)	θ _r (% vol)	θ _s (% vol)	θ _r (% vol)	θ _s (% vol)
VVL Composite 0-10 (85%, 1.46)	0.0061	1.3021	1.12	44.60	0.97	38.39
VVL Composite 11-15 (85%, 1.50)	0.0140	1.3170	0.27	42.99	0.23	37.96
VVL Composite 16-20 (85%, 1.45)	0.0094	1.2646	0.00	46.90	0.00	42.92
VVL Composite 21-30 (85%, 1.38)	0.0089	1.2641	0.00	48.73	0.00	42.94
VVL Composite 31+ (85%, 1.22)	0.0065	1.2130	0.00	57.37	0.00	53.98
VVL Composite TP-10 (85%, 1.51)	0.0231	1.3099	1.43	43.91	1.23	37.97
VVL Composite TP-12 (85%, 1.40)	0.0059	1.3005	3.43	46.81	3.02	41.45
VVL Composite TP-13 (85%, 1.37)	0.0083	1.2450	0.00	49.39	0.00	45.81
WB Borrow-1 (85%, 1.42)	0.0179	1.2868	1.94	47.42	1.80	44.09
WB Stockpile-1 (85%, 1.52)	0.0118	1.2869	1.45	44.26	1.38	41.97
WB Stockpile-2 (85%, 1.48)	0.0153	1.3648	3.35	47.09	2.83	39.90
Topsoil-1 (85%, 1.10)	0.0137	1.3859	3.92	59.68		

- NR = Not requested
- NA = Not applicable

^{--- =} Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 0-10 (85%, 1.46)
Project Name: PO Number:	VVL Composite Samples 12015

Dry wt. of sample (g):	3181.06
Tare wt., ring (g):	265.08
Tare wt., screen & clamp (g):	
<i>Initial sample volume</i> (cm ³):	2175.34
Initial dry bulk density (g/cm ³):	1.46
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 44.82

			Weight*	Matric Potential	Moisture Content [†]
_	Date	Time	(g)	(-cm water)	(% vol)
Hanging column:	8-Sep-14	14:00	4468.60	0	44.78
	15-Sep-14	10:00	4466.20	13.0	44.67
	22-Sep-14	15:33	4440.30	35.0	43.48
	29-Sep-14	16:20	4337.12	104.5	38.74
Pressure plate:	8-Oct-14	13:05	4248.60	337	34.67

	Volume Adjusted Data ¹				
					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	V			
	13.0				
	35.0				
	104.5				
Pressure plate:	337				

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

215994

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

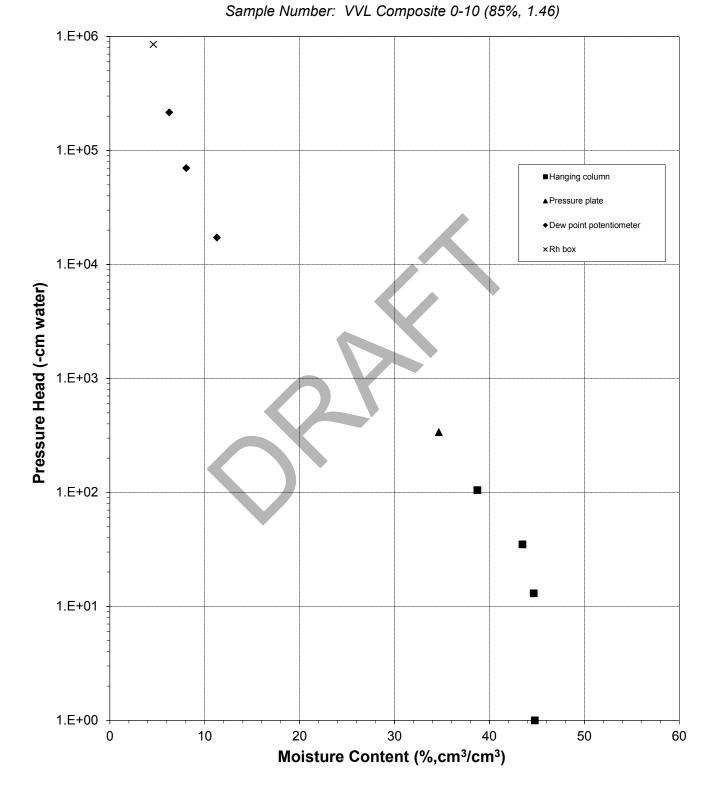
Sample Number: VVL Composite 0-10 (85%, 1.46)

Initial sample bulk density (g/cm³): 1.46 Fraction of test sample used (<2.00mm fraction) (%): 52.36

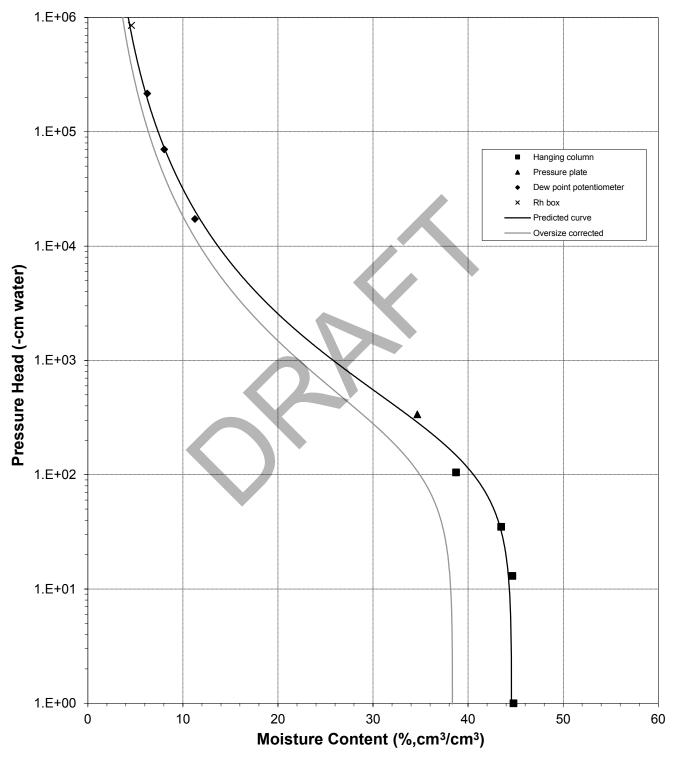
Dry weight* of dew point potentiometer sample (g): 164.36

Tare weight, jar (g): 110.60

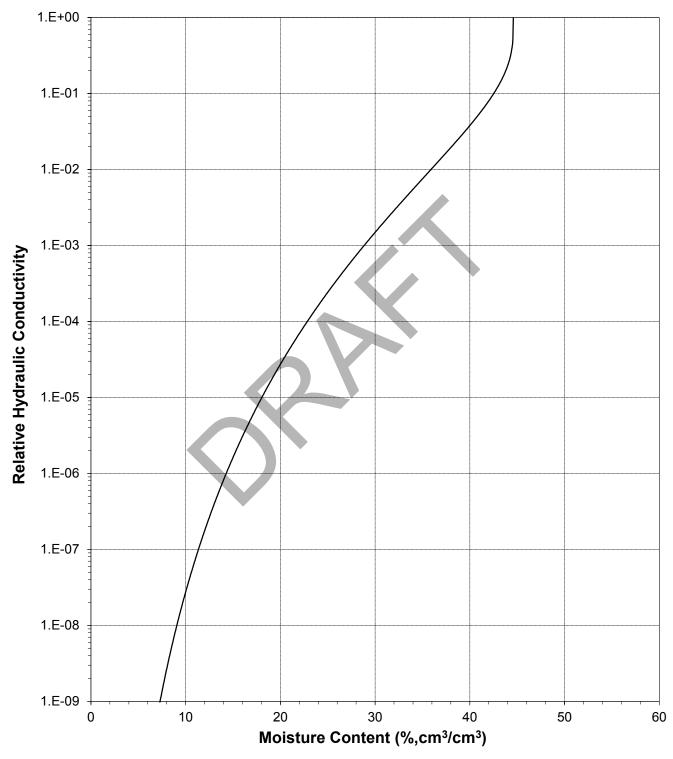
			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	10-Sep-14	13:06	172.28	17235	11.28
	10-Sep-14	9:30	170.01	70060	8.05
_	9-Sep-14	14:42	168.75	215994	6.25
	Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	17235				
	70060				

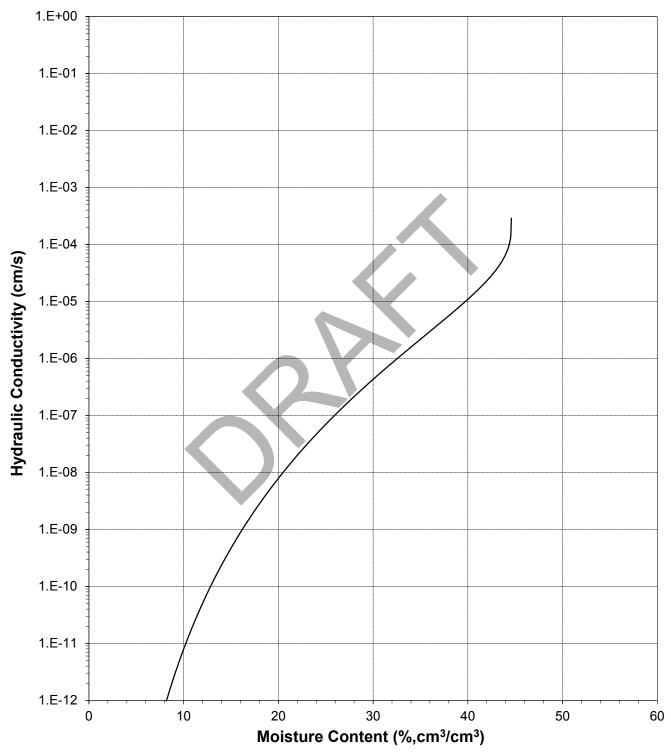

Dry weight* of relative humidity box sample (g): 72.21 Tare weight (g): 40.97

			0 (0)		
			Weight*	Water Potential	Moisture Content †
	Date	Time	(g)	(-cm water)	(% vol)
Relative humidity box:	9-Sep-14	11:00	74.08	851293	4.59
			Volume Adjust	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	851293				

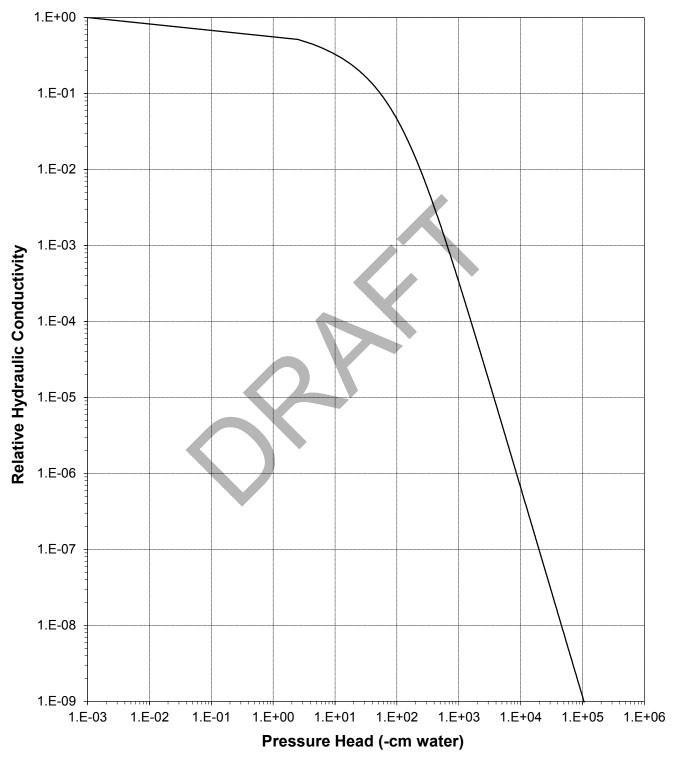

Comments:

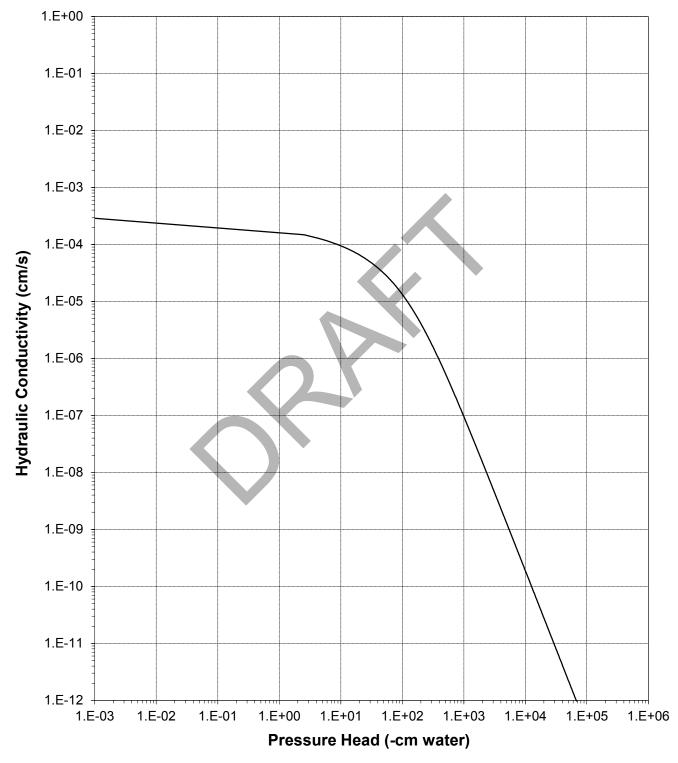
- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points

Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content


Plot of Hydraulic Conductivity vs Moisture Content

Constant of the second second

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 0-10 (85%, 1.46)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	22.66	77.34	100.00
Mass Fraction (%):	22.66	77.34	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.46	1.63
Calculated Porosity (% vol):	0.00	44.82	38.58
Volume of Solids (cm ³):	8.55	29.19	37.74
Volume of Voids (cm ³):	0.00	23.70	23.70
<i>Total Volume</i> (cm ³):	8.55	52.89	61.44
Volumetric Fraction (%):	13.91	86.09	100.00
Initial Moisture Content (% vol):	0.00	24.10	20.75
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.46	1.63
Calculated Porosity (% vol):	0.00	44.82	38.58
Volume of Solids (cm ³):	8.55	29.19	37.74
Volume of Voids (cm ³):	0.00	23.70	23.70
<i>Total Volume</i> (cm ³):	8.55	52.89	61.44
Volumetric Fraction (%):	13.91	86.09	100.00
Saturated Moisture Content (% vol):	0.00	44.60	38.39
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.46	1.63
Calculated Porosity (% vol):	0.00	44.82	38.58
Volume of Solids (cm ³):	8.55	29.19	37.74
Volume of Voids (cm ³):	0.00	23.70	23.70
<i>Total Volume</i> (cm ³):	8.55	52.89	61.44
Volumetric Fraction (%):	13.91	86.09	100.00
Residual Moisture Content (% vol):	0.00	1.12	0.97
Ksat (cm/sec):	NM	2.9E-04	2.2E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 11-15 (85%, 1.50) Project Name: VVL Composite Samples PO Number: 12015

Dry wt. of sample (g):	
Tare wt., ring (g):	270.65
Tare wt., screen & clamp (g):	
<i>Initial sample volume</i> (cm ³):	
Initial dry bulk density (g/cm³):	1.50
Assumed particle density (g/cm ³):	2.65
Initial calculated total porosity (%):	43.35

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	8-Sep-14	14:00	4609.50	0	42.71	
	15-Sep-14	9:30	4610.06	7.5	42.74	
	22-Sep-14	15:20	4586.50	24.0	41.68	
	29-Sep-14	16:00	4419.38	76.5	34.15	
Pressure plate:	9-Oct-14	7:40	4259.00	337	27.24	‡ ‡

	Volume Adjusted Data ¹				
					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	V			
	7.5				
	24.0				
	76.5				
Pressure plate:	337	2194.13	-1.17%	1.52	42.68

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: VVL Composite 11-15 (85%, 1.50)

Initial sample bulk density (g/cm³): 1.50 Fraction of test sample used (<2.00mm fraction) (%): 56.44

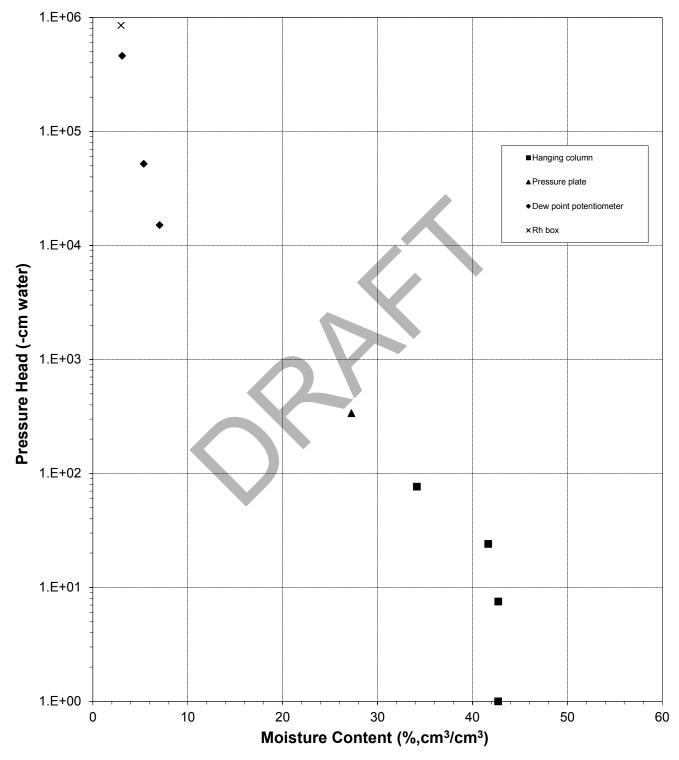
Dry weight* of dew point potentiometer sample (g): 178.32

Tare weight, jar (g): 117.95

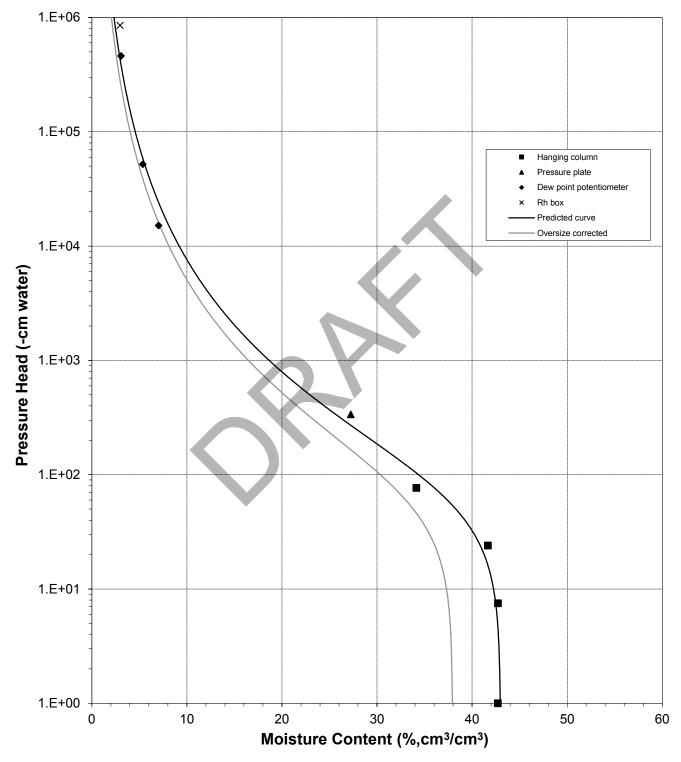
			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	_
Dew point potentiometer:	10-Sep-14	12:40	183.27	15093	7.03	
	10-Sep-14	8:41	182.10	52010	5.37	‡ ‡
	9-Sep-14	14:10	180.49	460950	3.08	_ ^{‡‡}

			Volume Adjuste	<u>d Data ¹</u>	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	15093	2194.13	-1.17%	1.52	42.68
	52010	2194.13	-1.17%	1.52	42.68
	460950	2194.13	-1.17%	1.52	42.68

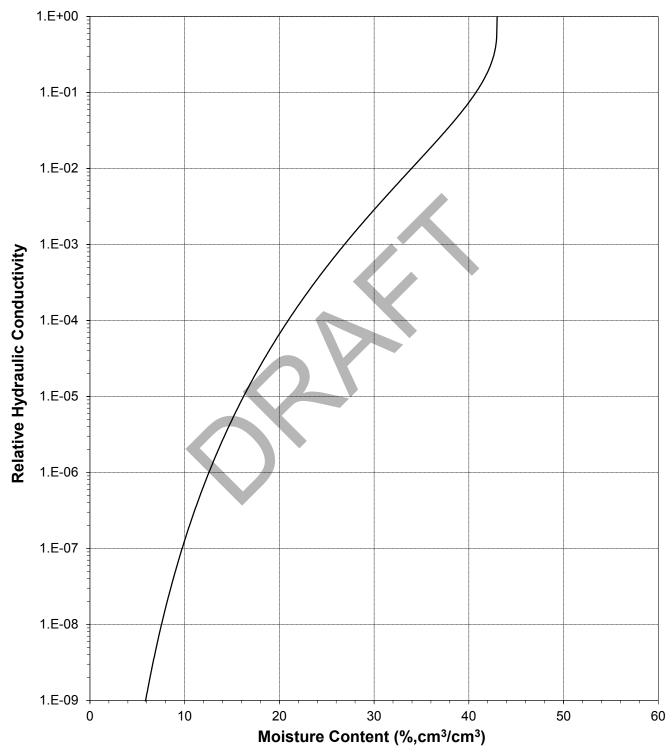
Dry weight* of relative humidity box sample (g): 73.44

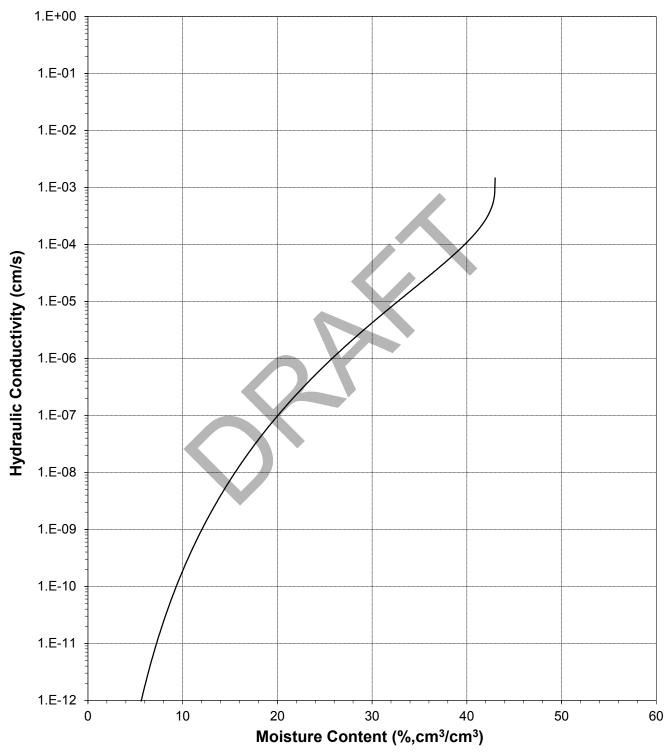

Tare weight (g): 41.63

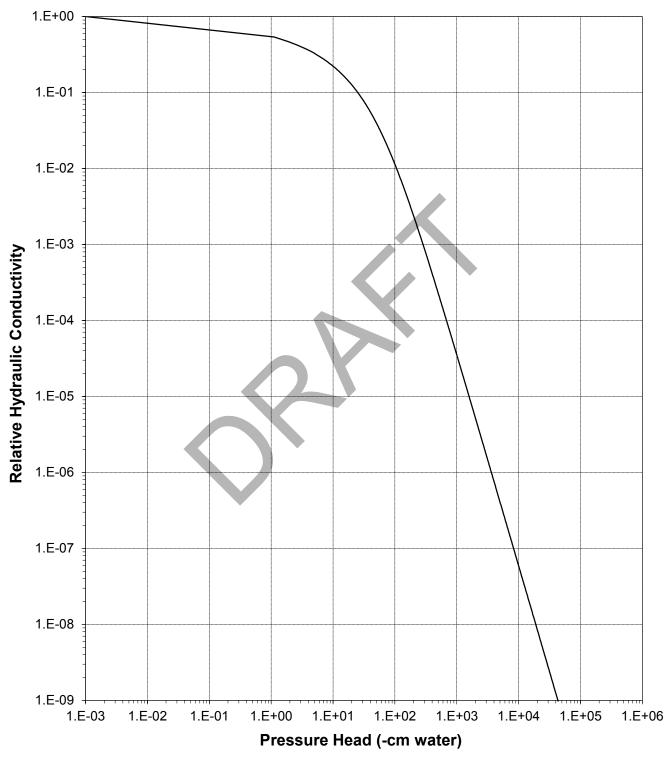
5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	9-Sep-14	11:00	74.55	851293	2.98	‡ ‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	851293	2194.13	-1.17%	1.52	42.68	_

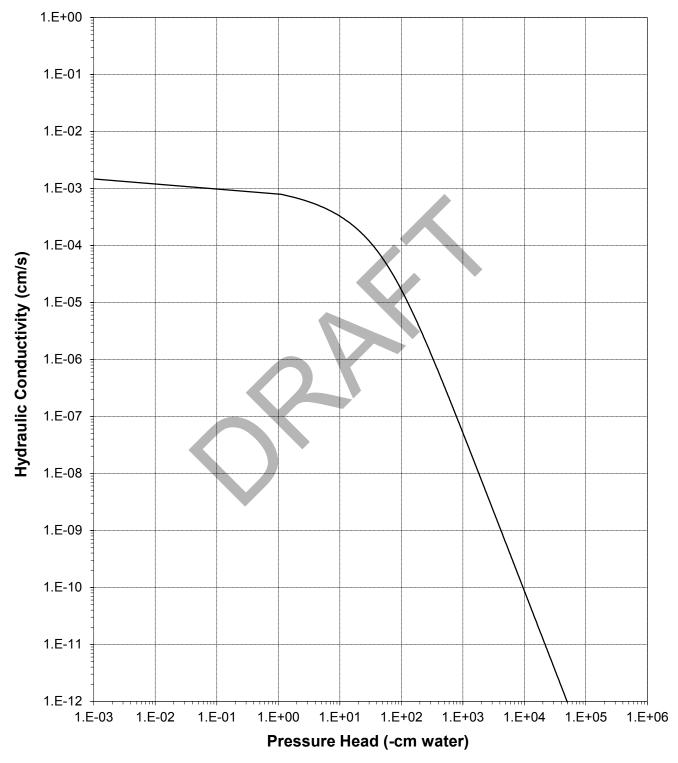

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 11-15 (85%, 1.50)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	18.97	81.03	100.00
Mass Fraction (%):	18.97	81.03	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.50	1.64
Calculated Porosity (% vol):	0.00	43.35	38.28
Volume of Solids (cm ³):	7.16	30.58	37.74
Volume of Voids (cm ³):	0.00	23.40	23.40
<i>Total Volume</i> (cm ³):	7.16	53.98	61.14
Volumetric Fraction (%):	11.71	88.29	100.00
Initial Moisture Content (% vol):	0.00	20.94	18.49
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.50	1.64
Calculated Porosity (% vol):	0.00	43.35	38.28
Volume of Solids (cm ³):	7.16	30.58	37.74
Volume of Voids (cm ³):	0.00	23.40	23.40
<i>Total Volume</i> (cm ³):	7.16	53.98	61.14
Volumetric Fraction (%):	11.71	88.29	100.00
Saturated Moisture Content (% vol):	0.00	42.99	37.96
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.52	1.65
Calculated Porosity (% vol):	0.00	42.68	37.63
Volume of Solids (cm ³):	7.16	30.58	37.74
Volume of Voids (cm ³):	0.00	22.77	22.77
<i>Total Volume</i> (cm ³):	7.16	53.34	60.50
Volumetric Fraction (%):	11.83	88.17	100.00
Residual Moisture Content (% vol):	0.00	0.27	0.23
Ksat (cm/sec):	NM	1.5E-03	1.2E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 16-20 (85%, 1.45)
Project Name: PO Number:	VVL Composite Samples 12015

Dry wt. of sample (g):	3186.29
Tare wt., ring (g):	269.93
Tare wt., screen & clamp (g):	47.27
<i>Initial sample volume</i> (cm ³) <i>:</i>	2194.77
<i>Initial dry bulk density</i> (g/cm ³):	1.45

Assumed particle density (g/cm³): 2.65 Initial calculated total porosity (%): 45.22

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)
Hanging column:	8-Sep-14	14:00	4539.10	0	47.19
	15-Sep-14	10:00	4534.19	12.5	46.96
	22-Sep-14	15:30	4472.40	34.5	44.15
	29-Sep-14	16:15	4356.73	107.5	38.88
Pressure plate:	8-Oct-14	13:00	4264.80	337	34.69

	Volume Adjusted Data ¹				
					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	12.5				
	34.5	<i>—</i>			
	107.5				
Pressure plate:	337				

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

285136

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

ew Point Potentiometer / Relative Humidity Bo

(Soil-Water Characteristic Curve)

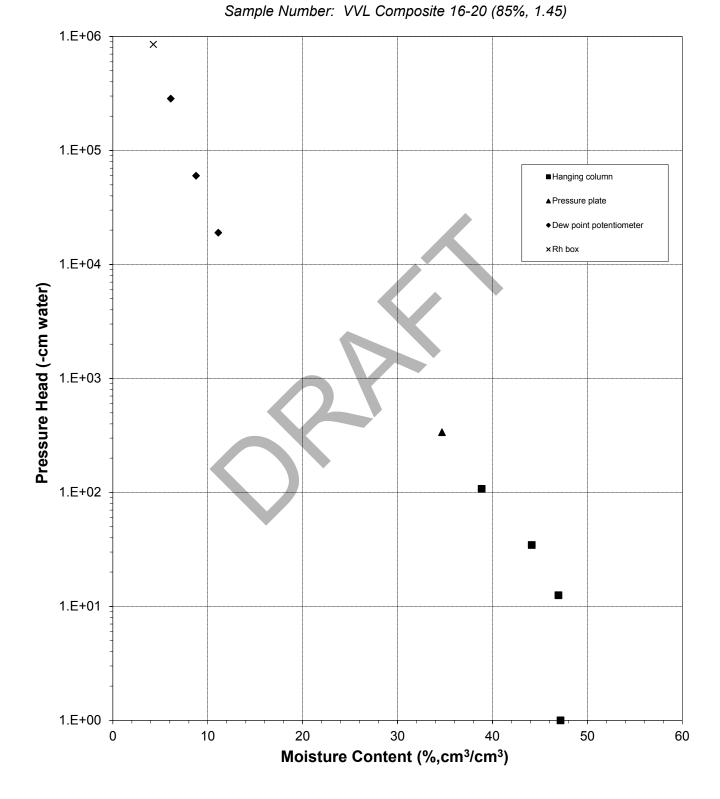
Sample Number: VVL Composite 16-20 (85%, 1.45)

Initial sample bulk density (g/cm³): 1.45 Fraction of test sample used (<2.00mm fraction) (%): 57.04

Dry weight* of dew point potentiometer sample (g): 169.95

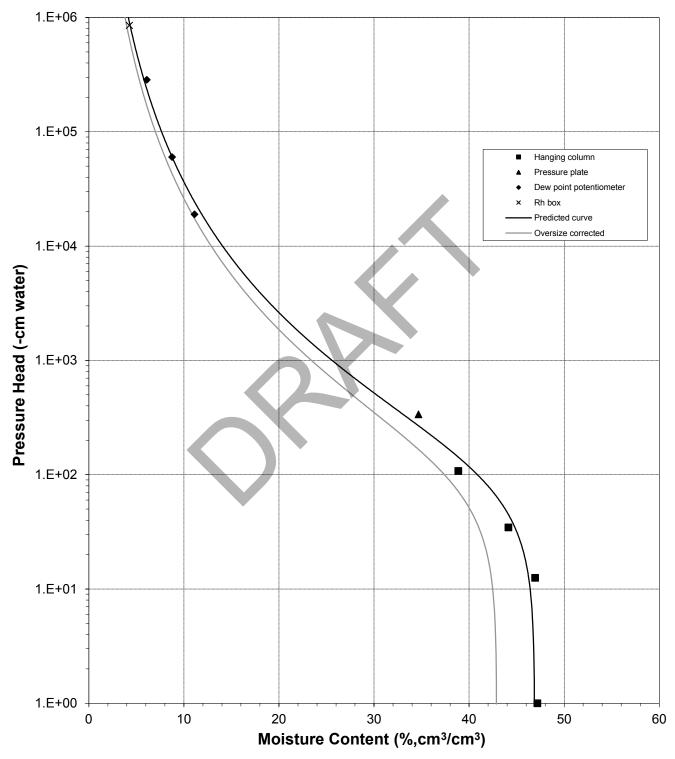
Tare weight, jar (g): 118.36

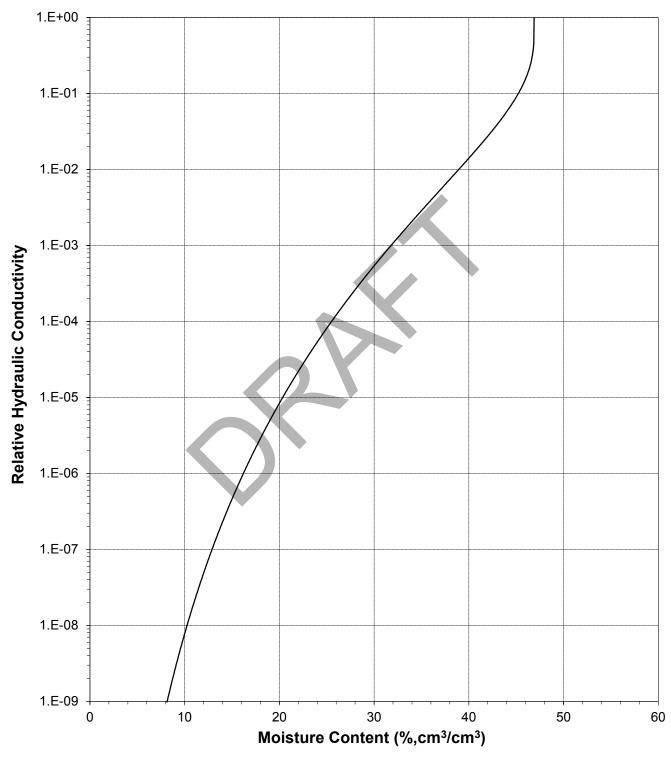
			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	10-Sep-14	13:20	176.88	18968	11.12
	10-Sep-14	10:50	175.41	60066	8.76
_	9-Sep-14	15:30	173.75	285136	6.10
			Volume Adjust	<u>ed Data ¹</u>	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	18968				
	60066				


Dry weight* of relative humidity box sample (g): 75.66 Tare weight (g): 40.73

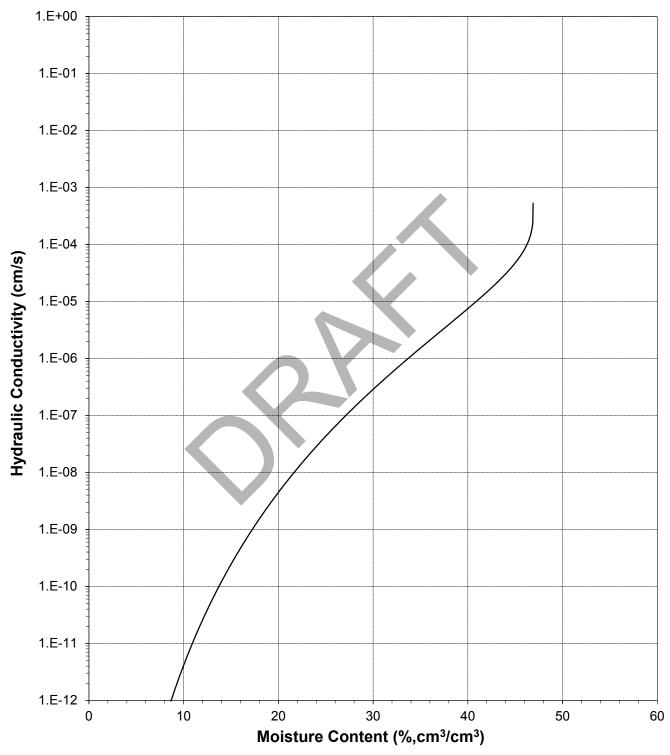
			0 (0)		
			Weight*	Water Potential	Moisture Content †
	Date	Time	(g)	(-cm water)	(% vol)
Relative humidity box:	9-Sep-14	11:00	77.46	851293	4.28
			Volume Adjust	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	851293				

Comments:

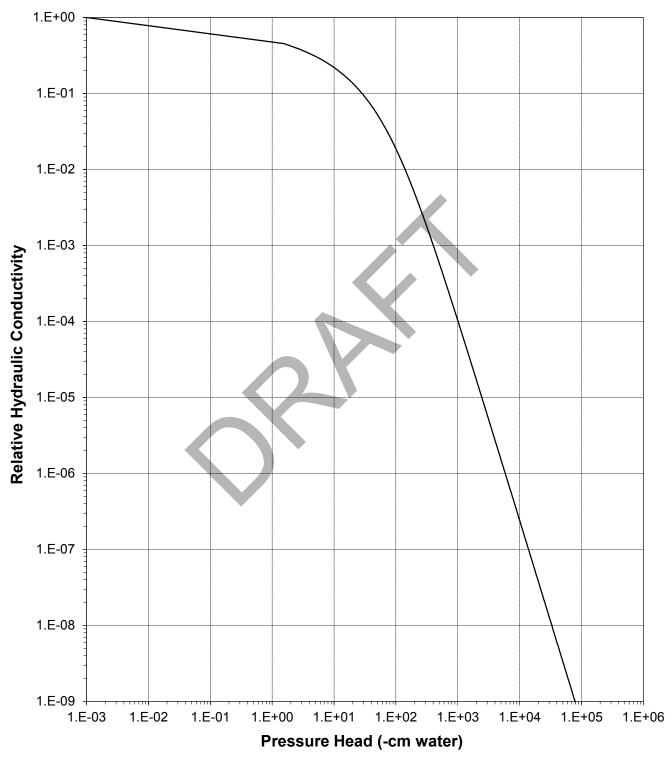

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

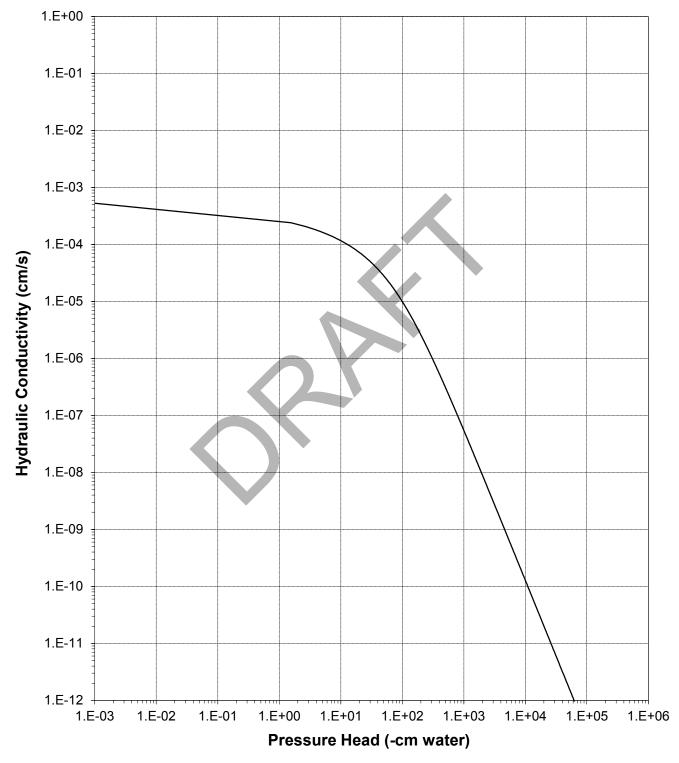


Water Retention Data Points


84

Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content


Plot of Hydraulic Conductivity vs Moisture Content

A CONTRACT OF CONTRACT

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 16-20 (85%, 1.45)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	14.48	85.52	100.00
Mass Fraction (%):	14.48	85.52	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.45	1.55
Calculated Porosity (% vol):	0.00	45.22	41.38
Volume of Solids (cm ³):	5.46	32.27	37.74
Volume of Voids (cm ³):	0.00	26.64	26.64
<i>Total Volume</i> (cm ³) <i>:</i>	5.46	58.91	64.37
Volumetric Fraction (%):	8.49	91.51	100.00
Initial Moisture Content (% vol):	0.00	24.76	22.66
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.45	1.55
Calculated Porosity (% vol):	0.00	45.22	41.38
Volume of Solids (cm ³):	5.46	32.27	37.74
Volume of Voids (cm ³):	0.00	26.64	26.64
<i>Total Volume</i> (cm ³):	5.46	58.91	64.37
Volumetric Fraction (%):	8.49	91.51	100.00
Saturated Moisture Content (% vol):	0.00	46.90	42.92
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.45	1.55
Calculated Porosity (% vol):	0.00	45.22	41.38
Volume of Solids (cm ³):	5.46	32.27	37.74
<i>Volume of Voids</i> (cm ³):	0.00	26.64	26.64
<i>Total Volume</i> (cm ³) <i>:</i>	5.46	58.91	64.37
Volumetric Fraction (%):	8.49	91.51	100.00
Residual Moisture Content (% vol):	0.00	0.00	0.00
Ksat (cm/sec):	NM	5.3E-04	4.5E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 21-30 (85%, 1.38) Project Name: VVL Composite Samples PO Number: 12015

Dry wt. of sample (g): 30)48.84
Tare wt., ring (g): 27	71.14
Tare wt., screen & clamp (g): 60	
Initial sample volume (cm ³): 22	201.91
Initial dry bulk density (g/cm ³): 1.	38
Assumed particle density (g/cm ³): 2.	65

Initial calculated total porosity (%): 47.75

			Weight*	Matric Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Hanging column:	8-Sep-14	14:00	4452.60	0	48.70
	15-Sep-14	9:30	4451.85	12.0	48.67
	22-Sep-14	15:15	4413.50	30.5	46.92
	29-Sep-14	13:45	4288.78	103.5	41.26
Pressure plate:	8-Oct-14	12:40	4172.90	337	36.00

		<u>Vol</u>	ume Adjusted Da	ata ¹	
					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	12.0				
	30.5				
	103.5				
Pressure plate:	337				

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data Dew Point Potentiometer / Relative Humidity Box

ew Point Potentiometer / Relative Humidity Bo

(Soil-Water Characteristic Curve)

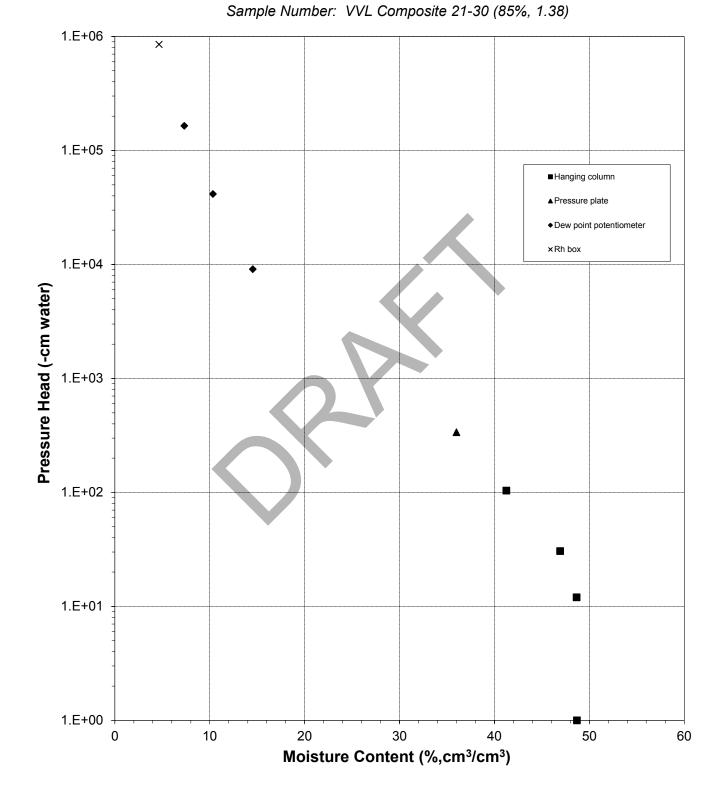
Sample Number: VVL Composite 21-30 (85%, 1.38)

Initial sample bulk density (g/cm³): 1.38 Fraction of test sample used (<2.00mm fraction) (%): 56.28

Dry weight* of dew point potentiometer sample (g): 161.19

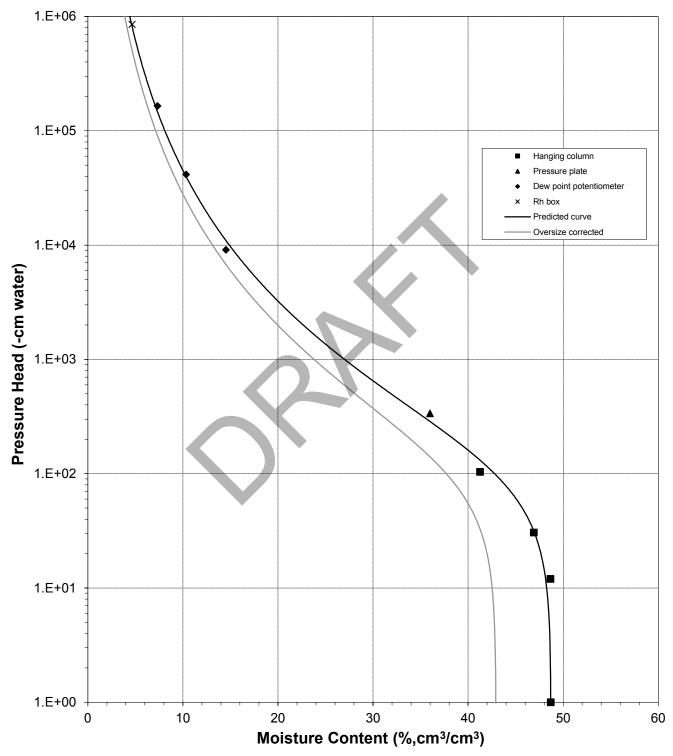
Tare weight, jar (g): 114.40

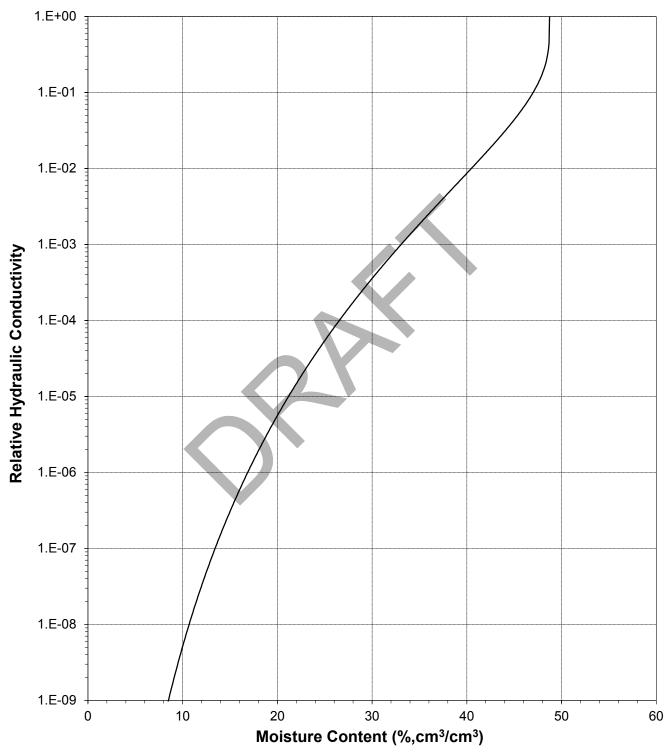
			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	10-Sep-14	13:17	169.92	9076	14.54
	10-Sep-14	12:15	167.40	41506	10.34
	9-Sep-14	16:00	165.59	164596	7.33
-				1	
			Volume Adjust	<u>ed Data '</u>	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	9076				
	41506				
	164596				


Dry weight* of relative humidity box sample (g): 69.86 Tare weight (g): 42.29

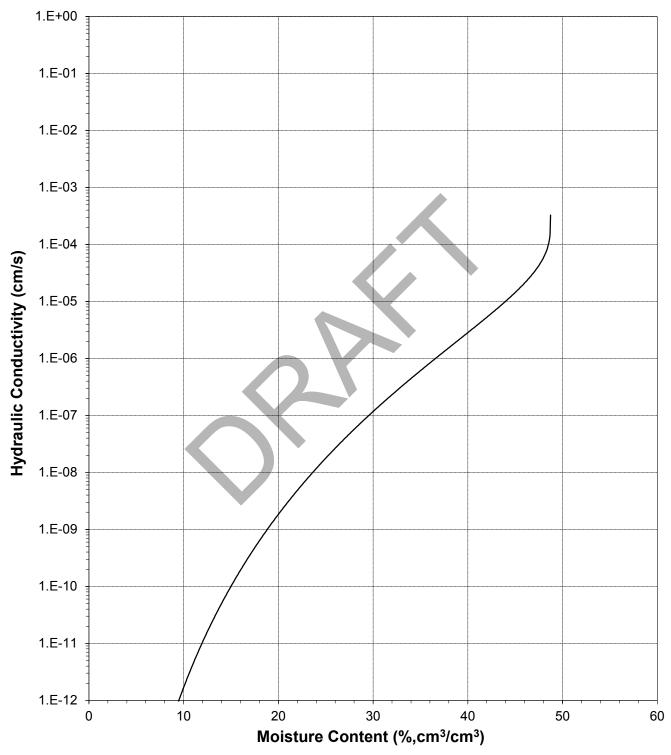
			0 (0)		
			Weight*	Water Potential	Moisture Content †
	Date	Time	(g)	(-cm water)	(% vol)
Relative humidity box:	9-Sep-14	11:00	71.51	851293	4.66
			Volume Adjust	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	851293				

Comments:

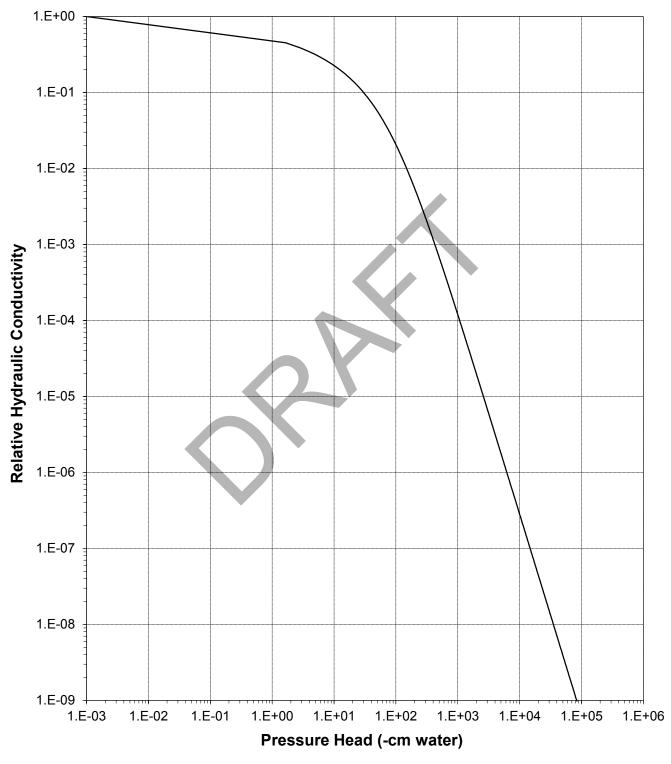

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

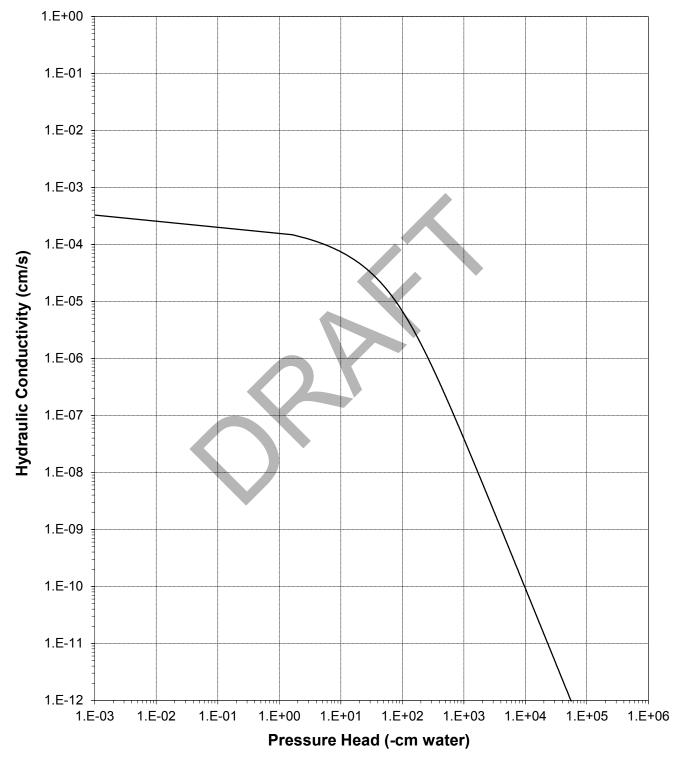


Water Retention Data Points


93

Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content


Plot of Hydraulic Conductivity vs Moisture Content

Danie

Daniel B. Stephens & Associates, Inc.

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 21-30 (85%, 1.38)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	20.52	79.48	100.00
Mass Fraction (%):	20.52	79.48	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.38	1.54
Calculated Porosity (% vol):	0.00	47.75	42.07
Volume of Solids (cm ³):	7.74	29.99	37.74
<i>Volume of Voids</i> (cm ³):	0.00	27.41	27.41
<i>Total Volume</i> (cm ³) <i>:</i>	7.74	57.40	65.14
Volumetric Fraction (%):	11.89	88.11	100.00
Initial Moisture Content (% vol):	0.00	25.09	22.11
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.38	1.54
Calculated Porosity (% vol):	0.00	47.75	42.07
Volume of Solids (cm ³):	7.74	29.99	37.74
Volume of Voids (cm ³):	0.00	27.41	27.41
<i>Total Volume</i> (cm ³):	7.74	57.40	65.14
Volumetric Fraction (%):	11.89	88.11	100.00
Saturated Moisture Content (% vol):	0.00	48.73	42.94
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.38	1.54
Calculated Porosity (% vol):	0.00	47.75	42.07
Volume of Solids (cm ³):	7.74	29.99	37.74
<i>Volume of Voids</i> (cm ³):	0.00	27.41	27.41
<i>Total Volume</i> (cm ³):	7.74	57.40	65.14
Volumetric Fraction (%):	11.89	88.11	100.00
Residual Moisture Content (% vol):	0.00	0.00	0.00
Ksat (cm/sec):	NM	3.3E-04	2.6E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 31+ (85%, 1.22)
Project Name:	VVL Composite Samples
PO Number:	12015

Dry wt. of sample (g):	2700.23
Tare wt., ring (g):	272.82
Tare wt., screen & clamp (g):	67.12
<i>Initial sample volume</i> (cm ³):	2217.25
Initial dry bulk density (g/cm³):	1.22
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 54.04

			Weight*	Matric Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Hanging column:	3-Sep-14	10:55	4309.20	0	57.23
	10-Sep-14	13:35	4308.96	12.0	57.22
	17-Sep-14	10:45	4295.60	32.0	56.62
	24-Sep-14	15:30	4188.20	93.0	51.78
Pressure plate:	4-Oct-14	10:45	4072.50	337	46.56

	Volume Adjusted Data ¹					
					Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0	X				
	12.0					
	32.0					
	93.0					
Pressure plate:	337					

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

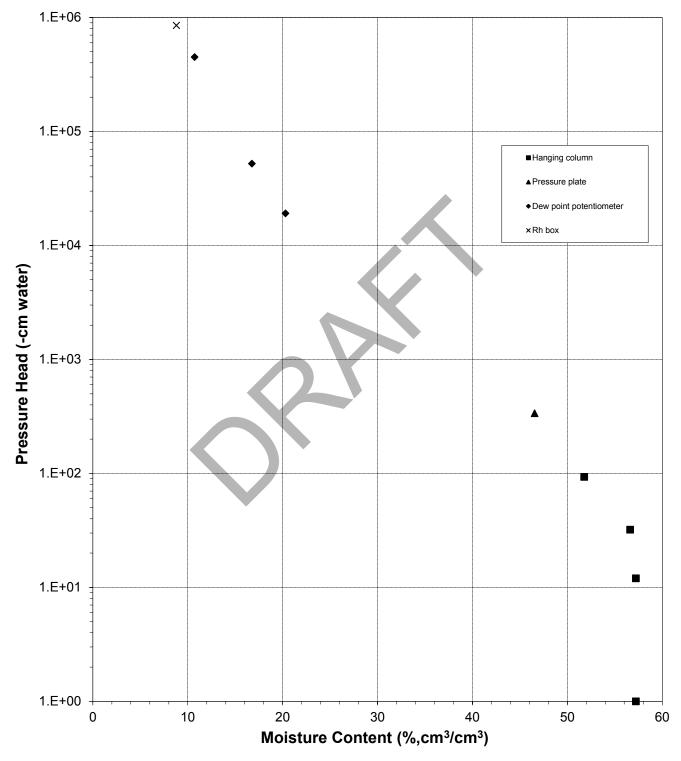
Sample Number: VVL Composite 31+ (85%, 1.22)

Initial sample bulk density (g/cm³): 1.22 Fraction of test sample used (<2.00mm fraction) (%): 78.45

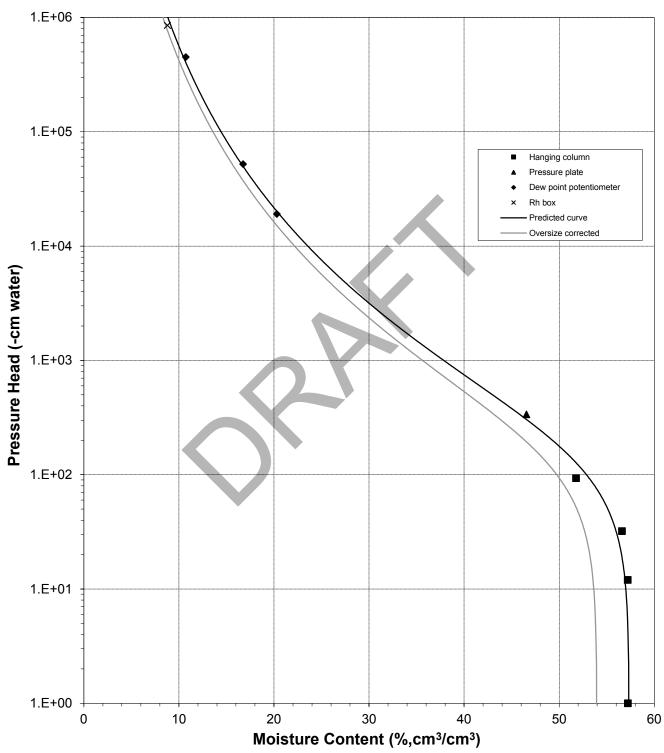
Dry weight* of dew point potentiometer sample (g): 147.15

Tare weight, jar (g): 116.43

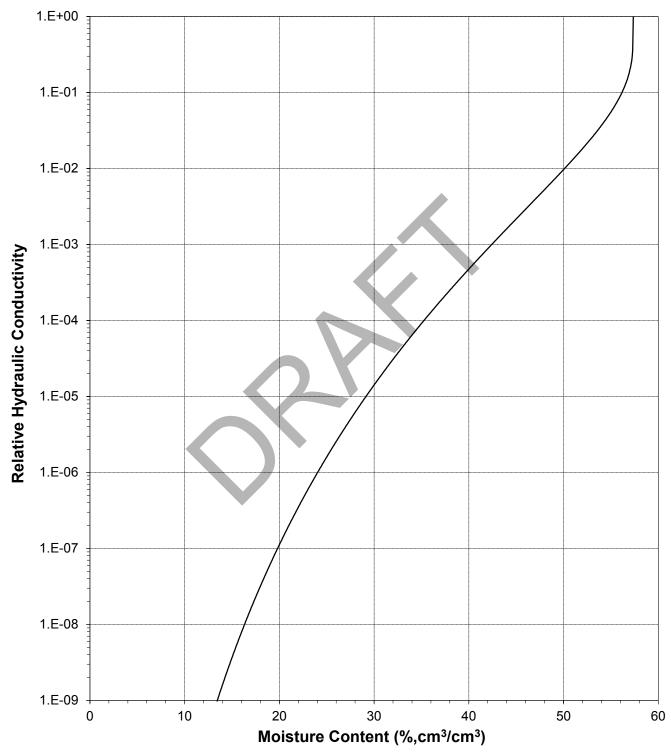
			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	10-Sep-14	13:00	153.68	19070	20.31
	10-Sep-14	9:00	152.54	52112	16.76
	9-Sep-14	14:30	150.60	449630	10.73
			Volume Adjust	<u>ed Data '</u>	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	19070				
	52112				
	449630				

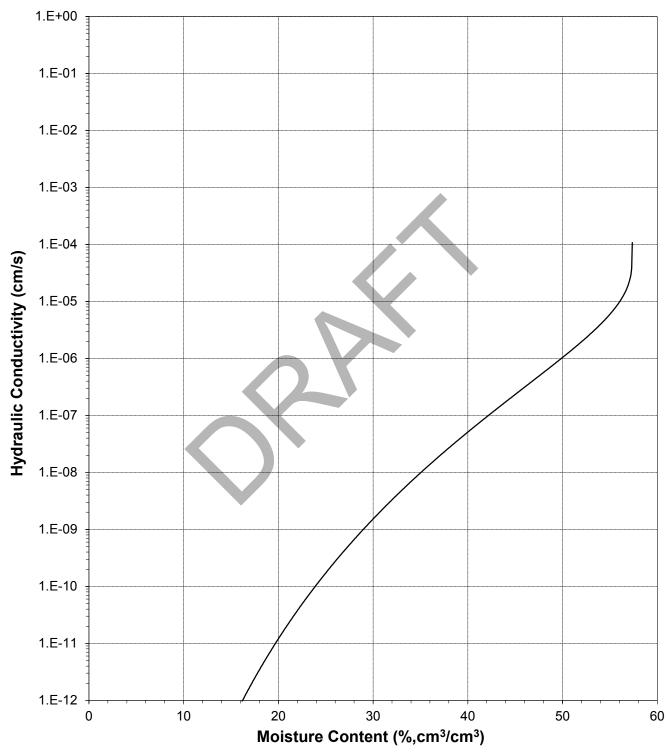

Dry weight* of relative humidity box sample (g): 59.09 Tare weight (g): 40.70

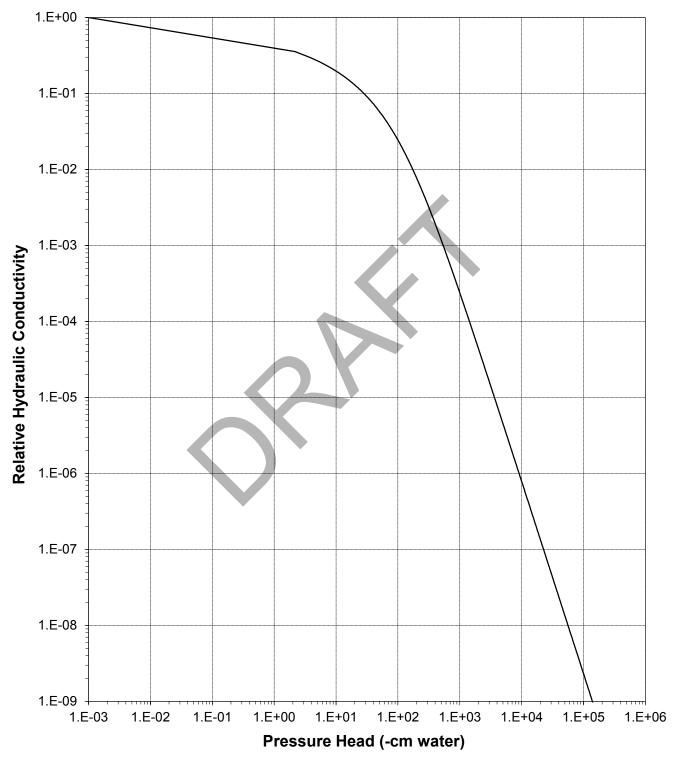
			0 (0)		
			Weight*	Water Potential	Moisture Content †
	Date	Time	(g)	(-cm water)	(% vol)
Relative humidity box:	9-Sep-14	11:00	60.78	851293	8.81
			Volume Adjust	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	851293				

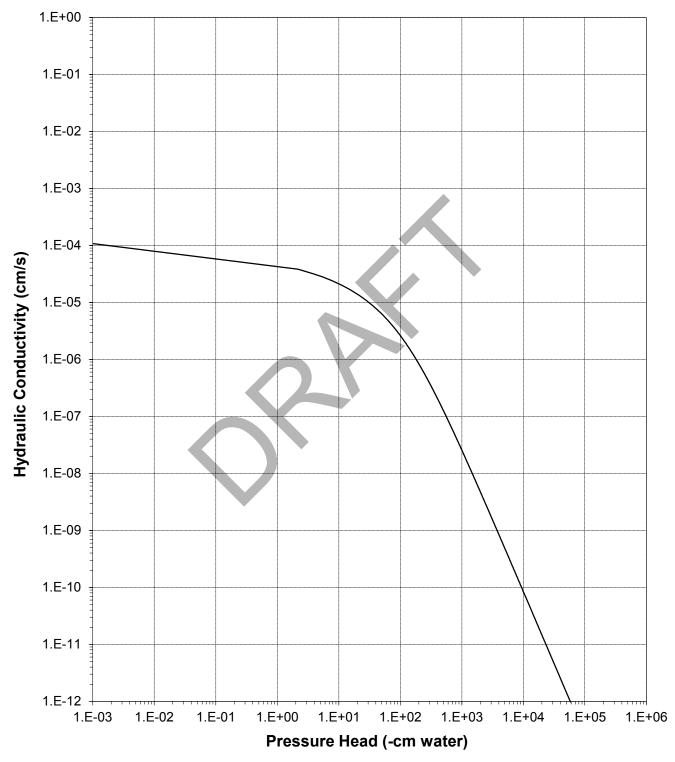

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 31+ (85%, 1.22)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	12.02	87.98	100.00
Mass Fraction (%):	12.02	87.98	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.22	1.30
Calculated Porosity (% vol):	0.00	54.04	50.85
Volume of Solids (cm ³):	4.54	33.20	37.74
Volume of Voids (cm ³):	0.00	39.04	39.04
<i>Total Volume</i> (cm ³):	4.54	72.24	76.78
Volumetric Fraction (%):	5.91	94.09	100.00
Initial Moisture Content (% vol):	0.00	33.05	31.10
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.22	1.30
Calculated Porosity (% vol):	0.00	54.04	50.85
Volume of Solids (cm ³):	4.54	33.20	37.74
Volume of Voids (cm ³):	0.00	39.04	39.04
<i>Total Volume</i> (cm ³):	4.54	72.24	76.78
Volumetric Fraction (%):	5.91	94.09	100.00
Saturated Moisture Content (% vol):	0.00	57.37	53.98
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.22	1.30
Calculated Porosity (% vol):	0.00	54.04	50.85
Volume of Solids (cm ³):	4.54	33.20	37.74
<i>Volume of Voids</i> (cm ³):	0.00	39.04	39.04
Total Volume (cm ³):	4.54	72.24	76.78
Volumetric Fraction (%):	5.91	94.09	100.00
Residual Moisture Content (% vol):	0.00	0.00	0.00
Ksat (cm/sec):	NM	1.1E-04	9.5E-05

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-10 (85%, 1.51)
Project Name: PO Number:	VVL Composite Samples 12015

Dry wt. of sample (g):	3342.18
Tare wt., ring (g):	272.60
Tare wt., screen & clamp (g):	
<i>Initial sample volume</i> (cm ³) <i>:</i>	2220.60
Initial dry bulk density (g/cm ³):	1.51

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 43.20

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	3-Sep-14	1:20	4630.70	0	43.33	_
	10-Sep-14	13:25	4624.48	8.0 20 F	43.05	
	17-Sep-14 24-Sep-14	10:35 15:15	4595.60 4399.65	20.5 73.0	41.75 33.21	‡ ‡
Pressure plate:	4-Oct-14	10:30	4174.90	337	24.15	

	Volume Adjusted Data					
					Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0					
	8.0					
	20.5					
	73.0	2201.16	-0.88%	1.52	42.70	
Pressure plate:	337	2096.96	-5.57%	1.59	39.86	

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: VVL Composite TP-10 (85%, 1.51)

Initial sample bulk density (g/cm³): 1.51 Fraction of test sample used (<2.00mm fraction) (%): 63.04

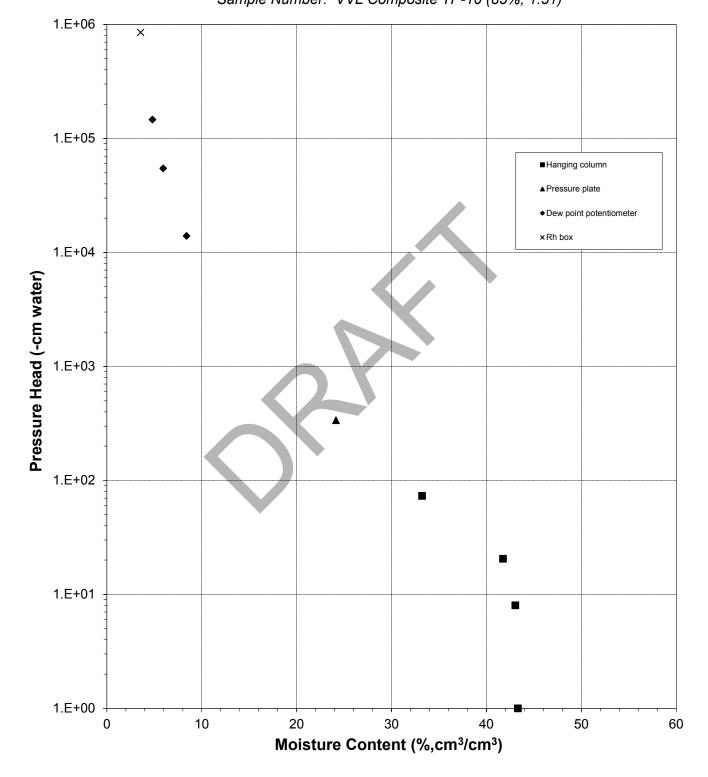
Dry weight* of dew point potentiometer sample (g): 169.09

Tare weight, jar (g): 112.27

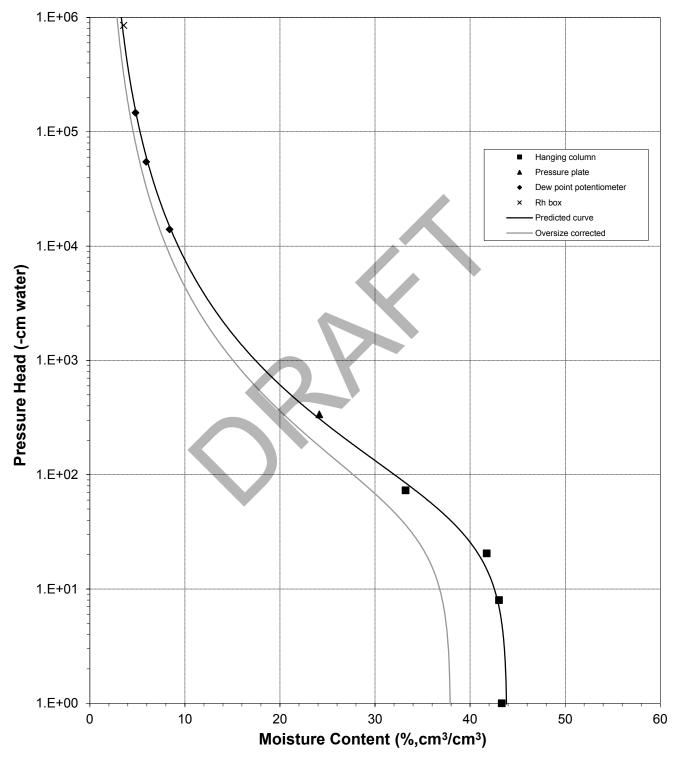
		Weight*	Water Potential	Moisture Content [†]	
Date	Time	(g)	(-cm water)	(% vol)	
10-Sep-14	14:10	173.84	13971	8.40	±‡
10-Sep-14	12:35	172.45	54559	5.94	‡ ‡
10-Sep-14	11:55	171.81	146545	4.81	_ ^{‡‡}
	10-Sep-14 10-Sep-14	10-Sep-1414:1010-Sep-1412:35	DateTime(g)10-Sep-1414:10173.8410-Sep-1412:35172.45	DateTime(g)(-cm water)10-Sep-1414:10173.841397110-Sep-1412:35172.4554559	DateTime(g)(-cm water)(% vol)10-Sep-1414:10173.84139718.4010-Sep-1412:35172.45545595.94

	Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	13971	2096.96	-5.57%	1.59	39.86
	54559	2096.96	-5.57%	1.59	39.86
-	146545	2096.96	-5.57%	1.59	39.86

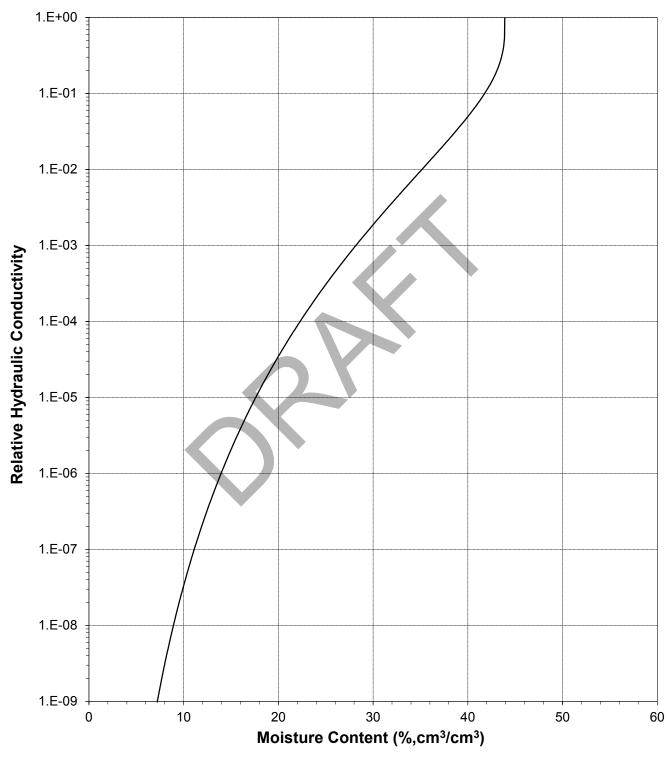

Dry weight* of relative humidity box sample (g): 72.86

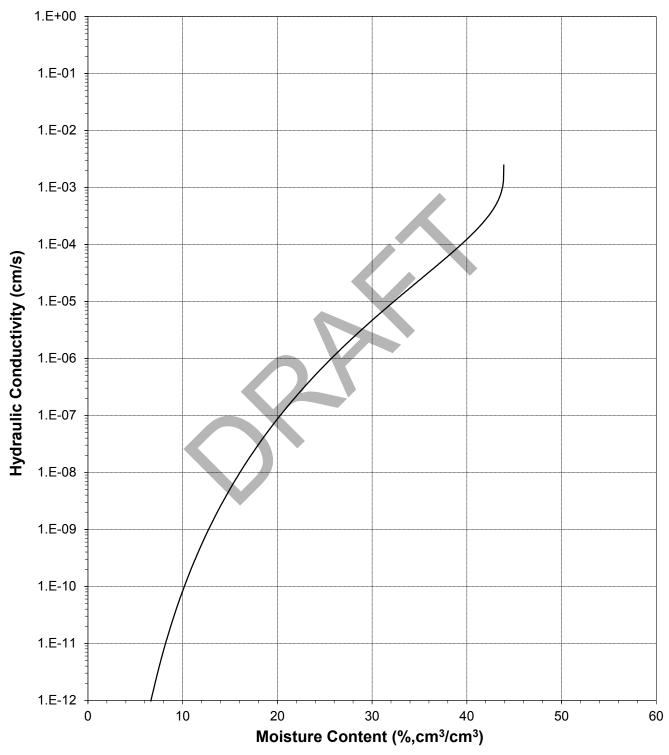

Tare weight (g): 47.61

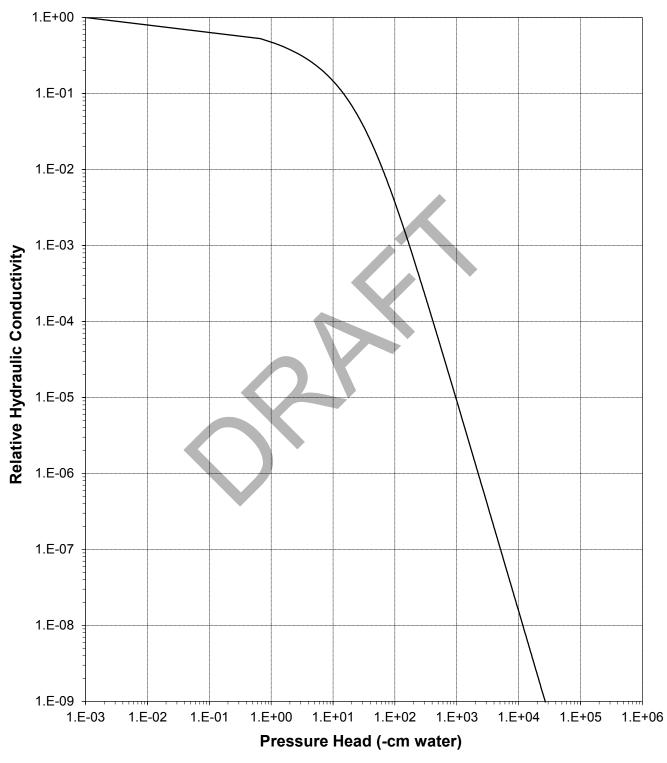
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	9-Sep-14	11:00	73.75	851293	3.57	‡ ‡
			Volume Adjusted Data ¹			
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	851293	2096.96	-5.57%	1.59	39.86	_

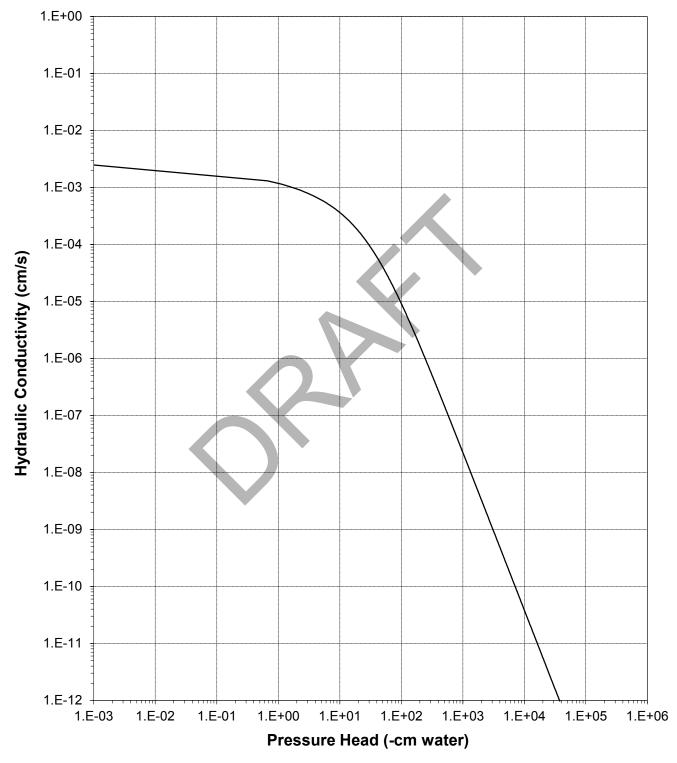

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points Sample Number: VVL Composite TP-10 (85%, 1.51)


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-10 (85%, 1.51)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	21.58	78.42	100.00
Mass Fraction (%):	21.58	78.42	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.51	1.66
Calculated Porosity (% vol):	0.00	43.20	37.36
Volume of Solids (cm ³):	8.14	29.59	37.74
<i>Volume of Voids</i> (cm ³):	0.00	22.51	22.51
<i>Total Volume</i> (cm ³) <i>:</i>	8.14	52.10	60.25
Volumetric Fraction (%):	13.52	86.48	100.00
Initial Moisture Content (% vol):	0.00	23.65	20.46
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.51	1.66
Calculated Porosity (% vol):	0.00	43.20	37.36
Volume of Solids (cm ³):	8.14	29.59	37.74
Volume of Voids (cm ³):	0.00	22.51	22.51
<i>Total Volume</i> (cm ³):	8.14	52.10	60.25
Volumetric Fraction (%):	13.52	86.48	100.00
Saturated Moisture Content (% vol):	0.00	43.91	37.97
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.59	1.74
Calculated Porosity (% vol):	0.00	39.86	34.19
Volume of Solids (cm ³):	8.14	29.59	37.74
<i>Volume of Voids</i> (cm ³):	0.00	19.61	19.61
<i>Total Volume</i> (cm ³):	8.14	49.20	57.34
Volumetric Fraction (%):	14.20	85.80	100.00
Residual Moisture Content (% vol):	0.00	1.43	1.23
<i>Ksat</i> (cm/sec):	NM	2.5E-03	2.0E-03

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-12 (85%, 1.40)
Project Name: PO Number:	VVL Composite Samples 12015

Dry wt. of sample (g):	3091.19
Tare wt., ring (g):	270.01
Tare wt., screen & clamp (g):	
<i>Initial sample volume</i> (cm ³) <i>:</i>	2203.81
<i>Initial dry bulk density</i> (g/cm ³):	1.40

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 47.07

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	3-Sep-14	10:40	4446.30	0	46.66	_
	10-Sep-14	13:30	4445.90	12.0	46.64	
	17-Sep-14	10:40	4437.06	32.0	46.24	
	24-Sep-14	15:20	4334.46	105.0	41.59	
Pressure plate:	4-Oct-14	10:37	4184.50	337	36.86	‡‡

	Volume Adjusted Data ¹				
					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0	X			
	12.0				
	32.0				
	105.0				
Pressure plate:	337	2079.65	-5.63%	1.49	43.91

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: VVL Composite TP-12 (85%, 1.40)

Initial sample bulk density (g/cm³): 1.40 Fraction of test sample used (<2.00mm fraction) (%): 60.23

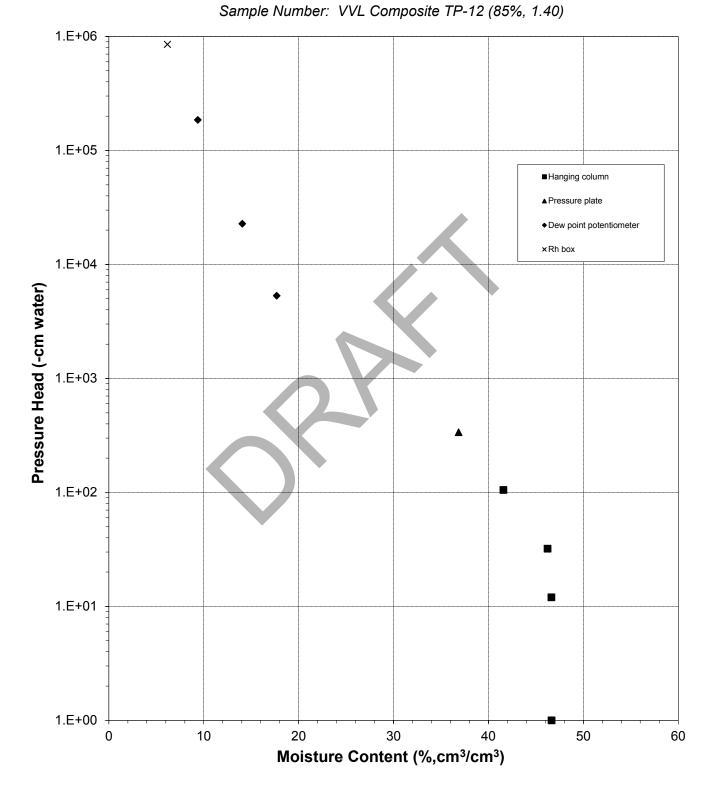
Dry weight* of dew point potentiometer sample (g): 136.31

Tare weight, jar (g): 111.86

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Dew point potentiometer:	10-Sep-14	12:45	141.14	5303	17.69	- ^{‡‡}
	10-Sep-14	8:46	140.15	22742	14.06	‡ ‡
<u> </u>	9-Sep-14	14:30	138.87	185502	9.37	_ ^{‡‡}

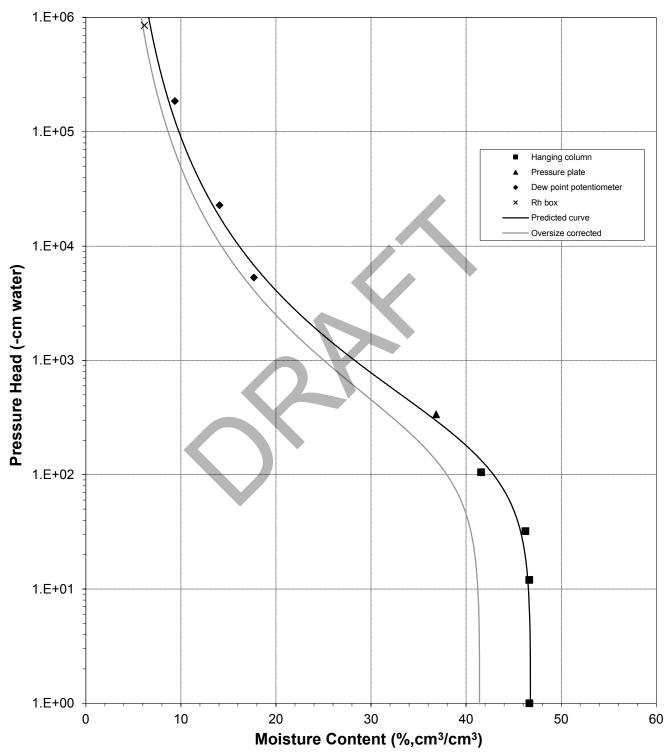
			Volume Adjuste	<u>d Data ¹</u>	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	5303	2079.65	-5.63%	1.49	43.91
	22742	2079.65	-5.63%	1.49	43.91
<u>.</u>	185502	2079.65	-5.63%	1.49	43.91

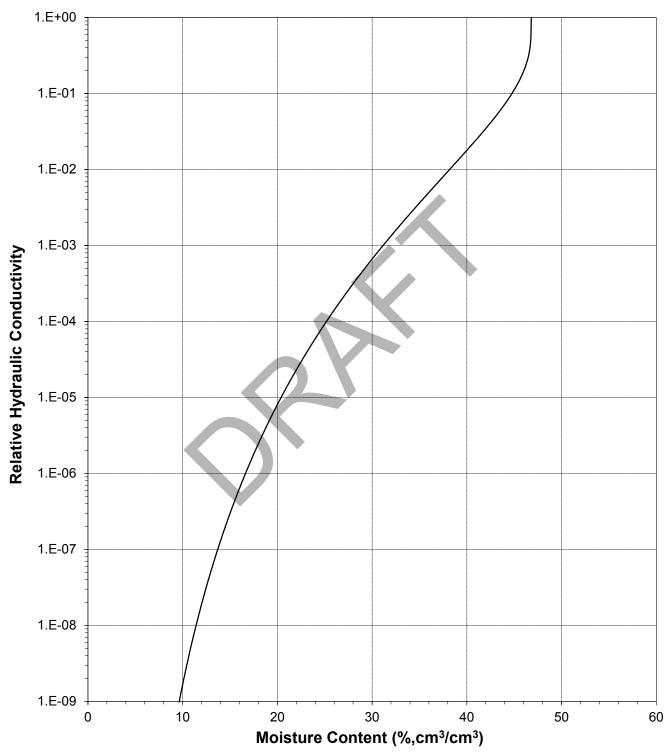
Dry weight* of relative humidity box sample (g): 60.11


Tare weight (g): 38.03

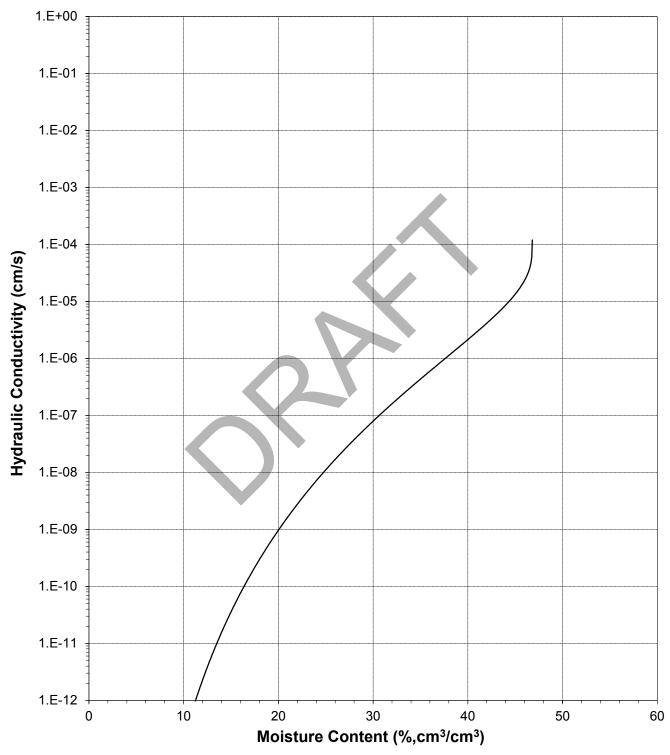
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	9-Sep-14	11:00	61.63	851293	6.18	‡‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	851293	2079.65	-5.63%	1.49	43.91	_

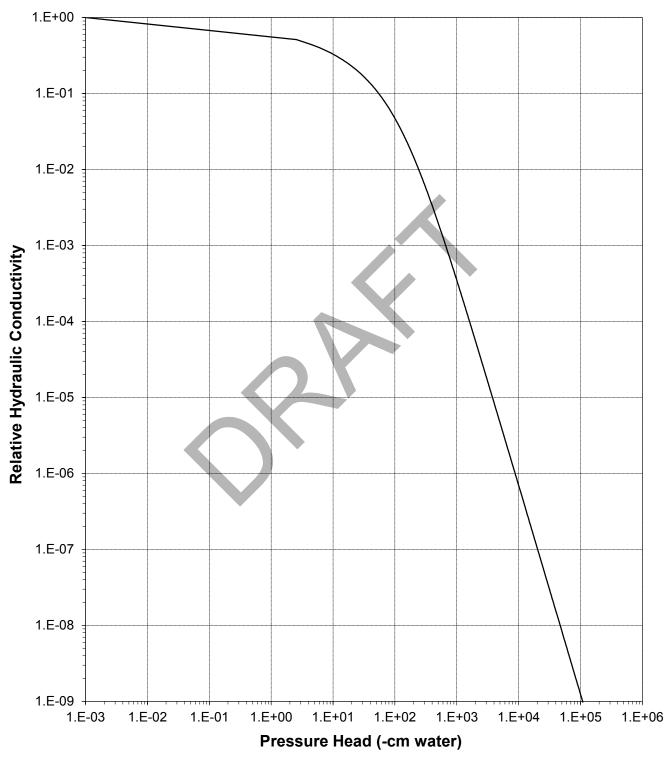
Comments:

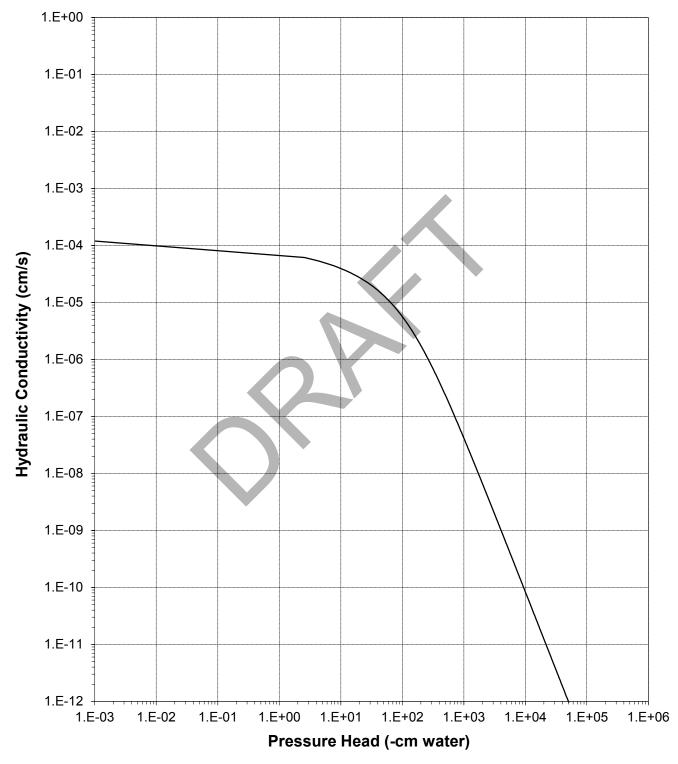

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.



Water Retention Data Points


120


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-12 (85%, 1.40)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	19.61	80.39	100.00
Mass Fraction (%):	19.61	80.39	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.40	1.55
Calculated Porosity (% vol):	0.00	47.07	41.69
Volume of Solids (cm ³):	7.40	30.33	37.74
<i>Volume of Voids</i> (cm ³):	0.00	26.98	26.98
<i>Total Volume</i> (cm ³) <i>:</i>	7.40	57.31	64.71
Volumetric Fraction (%):	11.44	88.56	100.00
Initial Moisture Content (% vol):	0.00	26.07	23.09
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.40	1.55
Calculated Porosity (% vol):	0.00	47.07	41.69
Volume of Solids (cm ³):	7.40	30.33	37.74
Volume of Voids (cm ³):	0.00	26.98	26.98
<i>Total Volume</i> (cm ³):	7.40	57.31	64.71
Volumetric Fraction (%):	11.44	88.56	100.00
Saturated Moisture Content (% vol):	0.00	46.81	41.45
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.49	1.63
Calculated Porosity (% vol):	0.00	43.91	38.62
Volume of Solids (cm ³):	7.40	30.33	37.74
<i>Volume of Voids</i> (cm ³):	0.00	23.75	23.75
<i>Total Volume</i> (cm ³):	7.40	54.08	61.48
Volumetric Fraction (%):	12.04	87.96	100.00
Residual Moisture Content (% vol):	0.00	3.43	3.02
<i>Ksat</i> (cm/sec):	NM	1.2E-04	9.6E-05

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-13 (85%, 1.37) Project Name: VVL Composite Samples PO Number: 12015

Dry wt. of sample (g):	3086.05
<i>Tare wt., ring</i> (g):	275.53
Tare wt., screen & clamp (g):	
<i>Initial sample volume</i> (cm ³):	2250.16
Initial dry bulk density (g/cm ³):	1.37
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 48.25

	Date	Time	Weight* (g)	Matric Potential (-cm water)	Moisture Content [†] (% vol)	
Hanging column:	8-Sep-14	14:00	4536.42	0	49.76	_
	15-Sep-14	9:33	4547.12	13.0	49.33	‡ ‡
	22-Sep-14	15:25	4501.30	34.0	47.33	‡ ‡
	29-Sep-14	16:05	4381.16	103.0	42.09	‡ ‡
Pressure plate:	8-Oct-14	12:48	4289.80	337	38.10	‡‡

	Volume Adjusted Data ¹				
					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	13.0	2291.03	+1.82%	1.35	49.17
	34.0	2291.03	+1.82%	1.35	49.17
	103.0	2291.03	+1.82%	1.35	49.17
Pressure plate:	337	2291.03	+1.82%	1.35	49.17

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Assumed density of water is 1.0 g/cm³
- ⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: VVL Composite TP-13 (85%, 1.37)

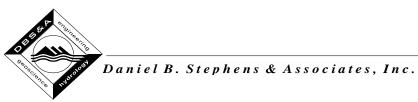
Initial sample bulk density (g/cm³): 1.37 Fraction of test sample used (<2.00mm fraction) (%): 65.88

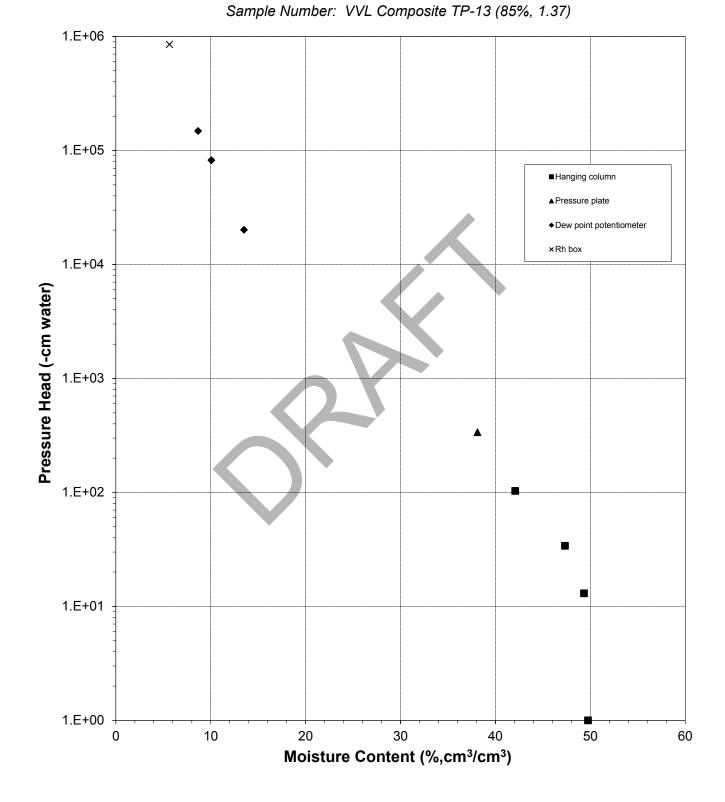
Dry weight* of dew point potentiometer sample (g): 160.83

Tare weight, jar (g): 114.94

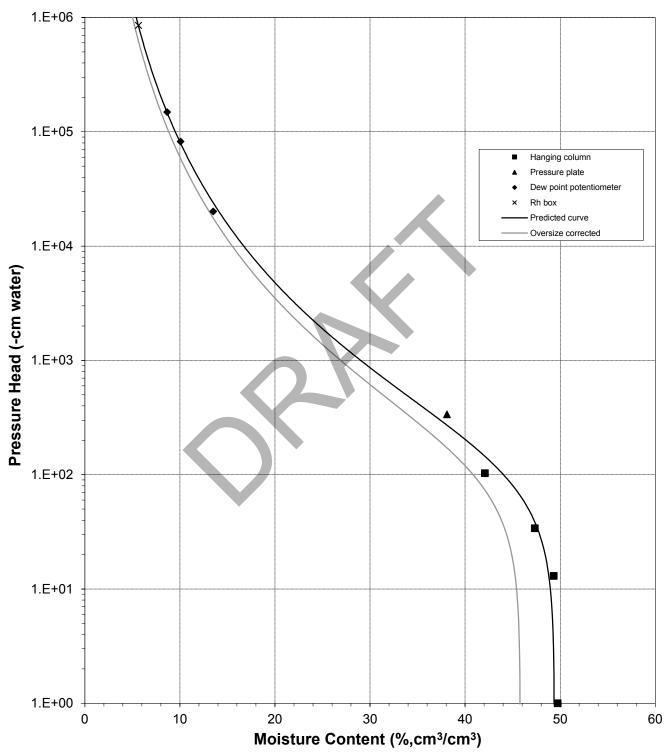
			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	_
Dew point potentiometer:	10-Sep-14	9:55	167.82	20090	13.52	 ‡‡
	9-Sep-14	15:30	166.04	82196	10.07	‡ ‡
	9-Sep-14	14:32	165.31	148381	8.66	_ ‡‡
						_

			Volume Adjuste	<u>d Data ¹</u>	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	20090	2291.03	+1.82%	1.35	49.17
	82196	2291.03	+1.82%	1.35	49.17
	148381	2291.03	+1.82%	1.35	49.17

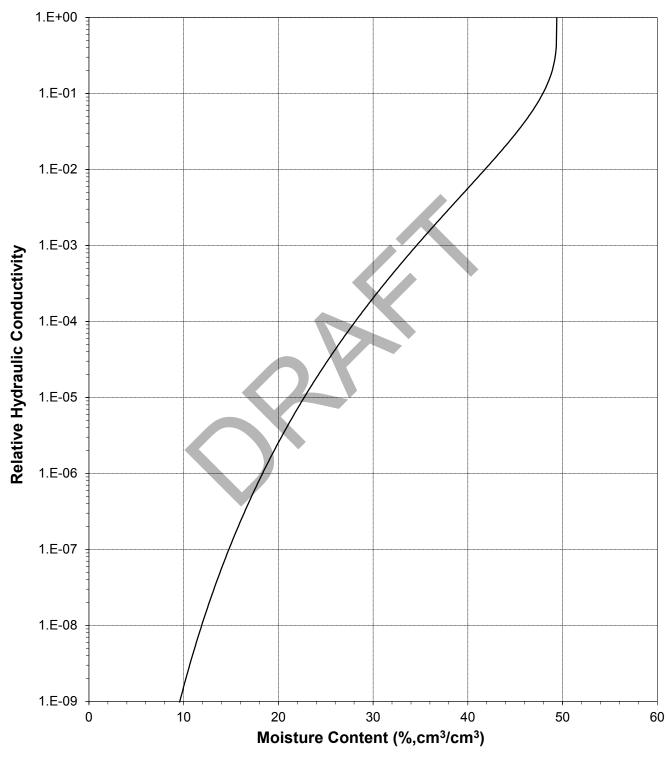

Dry weight* of relative humidity box sample (g): 83.17

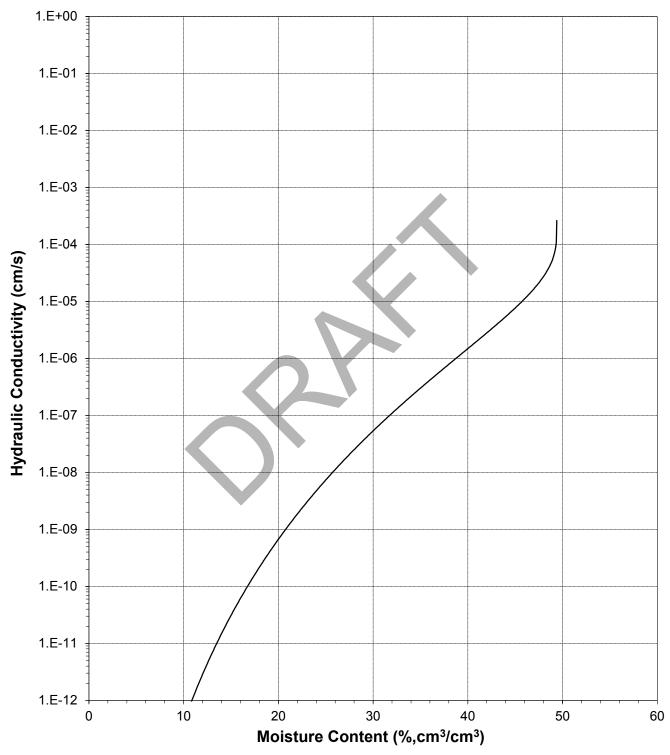

Tare weight (g): 44.10

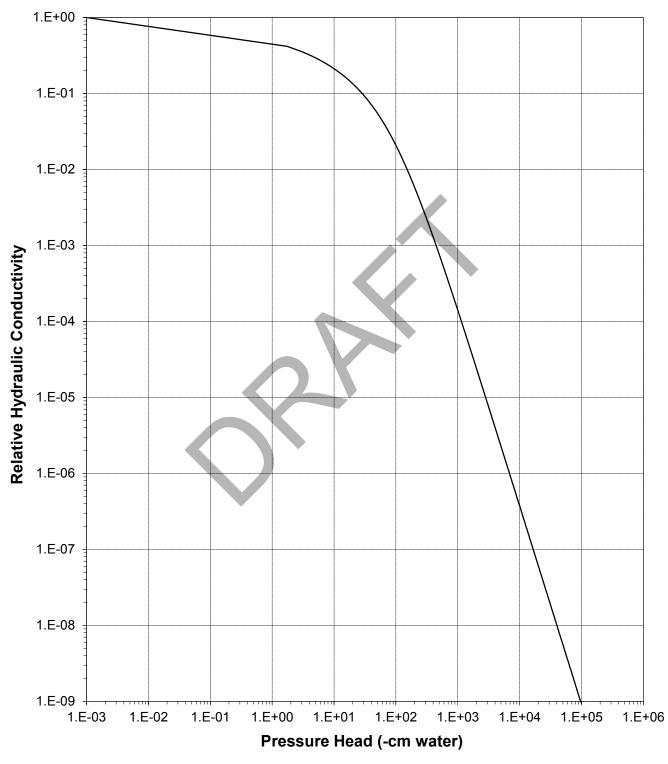
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	9-Sep-14	11:00	85.66	851293	5.66	‡ ‡
			Volume Adjust	ted Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	_
Relative humidity box:	851293	2291.03	+1.82%	1.35	49.17	_


Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points


Predicted Water Retention Curve and Data Points

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-13 (85%, 1.37)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	13.14	86.86	100.00
Mass Fraction (%):	13.14	86.86	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.37	1.46
Calculated Porosity (% vol):	0.00	48.25	44.74
Volume of Solids (cm ³):	4.96	32.78	37.74
Volume of Voids (cm ³):	0.00	30.56	30.56
<i>Total Volume</i> (cm ³):	4.96	63.33	68.29
Volumetric Fraction (%):	7.26	92.74	100.00
Initial Moisture Content (% vol):	0.00	28.91	26.81
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.37	1.46
Calculated Porosity (% vol):	0.00	48.25	44.74
Volume of Solids (cm ³):	4.96	32.78	37.74
Volume of Voids (cm ³):	0.00	30.56	30.56
<i>Total Volume</i> (cm ³):	4.96	63.33	68.29
Volumetric Fraction (%):	7.26	92.74	100.00
Saturated Moisture Content (% vol):	0.00	49.39	45.81
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.35	1.44
Calculated Porosity (% vol):	0.00	49.17	45.66
Volume of Solids (cm ³):	4.96	32.78	37.74
Volume of Voids (cm ³):	0.00	31.71	31.71
<i>Total Volume</i> (cm ³):	4.96	64.49	69.44
Volumetric Fraction (%):	7.14	92.86	100.00
Residual Moisture Content (% vol):	0.00	0.00	0.00
<i>Ksat</i> (cm/sec):	NM	2.6E-04	2.3E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Borrow-1 (85%, 1.42) Project Name: VVL Composite Samples PO Number: 12015 Dry wt. of sample (g): 164.29 Tare wt., ring (g): 53.27 Tare wt., screen & clamp (g): 25.51 Initial sample volume (cm³): 115.77 Initial dry bulk density (g/cm³): 1.42 Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 46.45

			Weight*	Matric Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Hanging column:	3-Sep-14	11:45	297.09	0	46.66
	10-Sep-14	13:30	296.54	7.0	46.19
	17-Sep-14	10:30	296.15	29.0	45.85
	24-Sep-14	15:22	286.73	102.0	37.71
Pressure plate:	3-Oct-14	16:25	273.63	337	26.40

	Volume Adjusted Data ¹					
					Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0					
	7.0					
	29.0	-				
	102.0					
Pressure plate:	337					

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: WB Borrow-1 (85%, 1.42)

Initial sample bulk density (g/cm³): 1.42

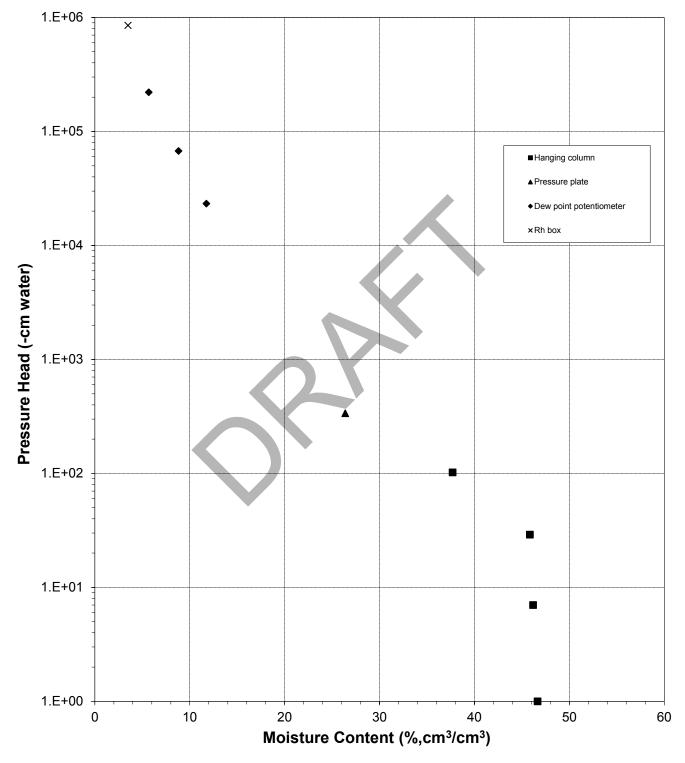
Fraction of test sample used (<2.00mm fraction) (%): 82.87

Dry weight* of dew point potentiometer sample (g): 156.79

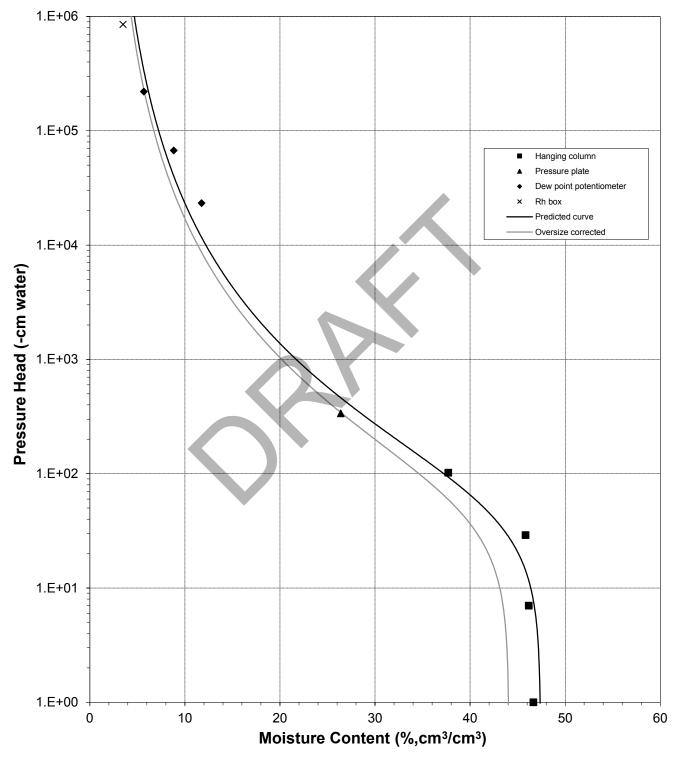
Tare weight, jar (g): 117.49

			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Dew point potentiometer:	10-Sep-14	9:00	160.72	23251	11.76
	9-Sep-14	16:00	159.74	67307	8.83
	9-Sep-14	14:08	158.69	220379	5.69
			Volume Adjust	<u>ed Data '</u>	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	23251	🤇			
	67307				
	220379				

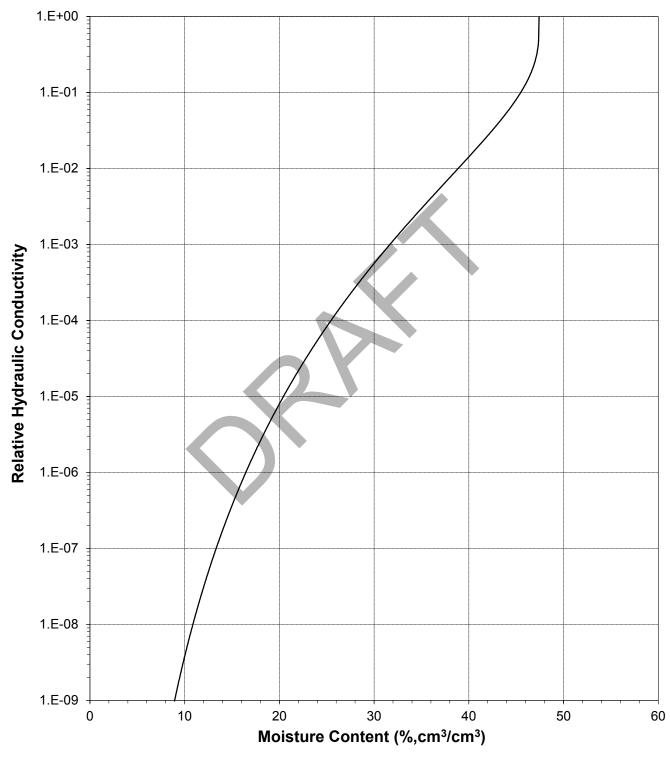
Dry weight* of relative humidity box sample (g): 59.40 2

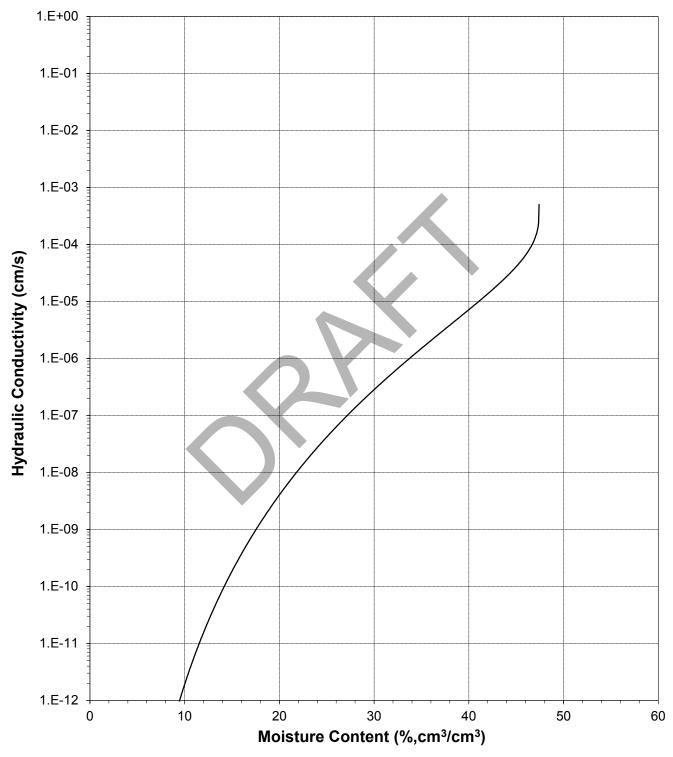

Tare	weight	(q):	36.82

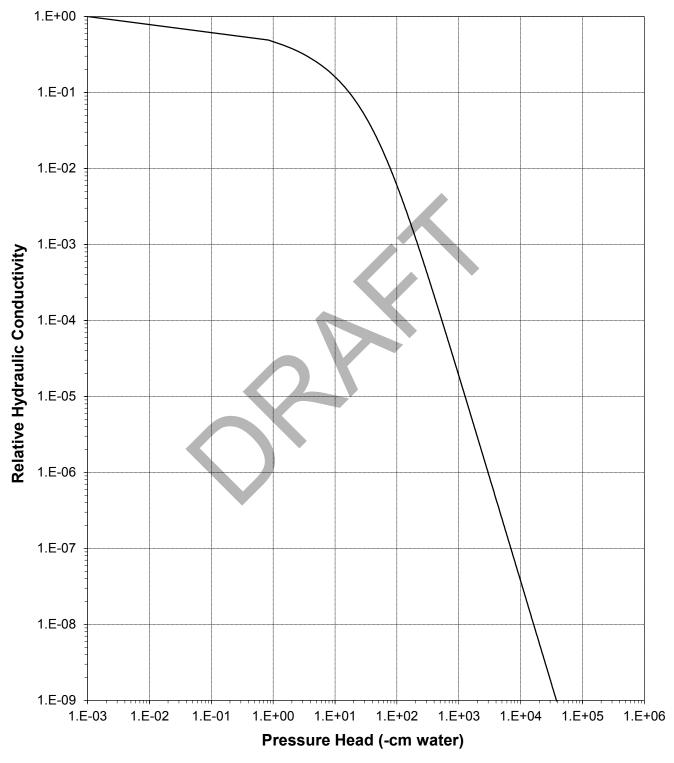
	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
Relative humidity box:	9-Sep-14	11:00	60.07	851293	3.49
			Volume Adjust	ted Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	851293				

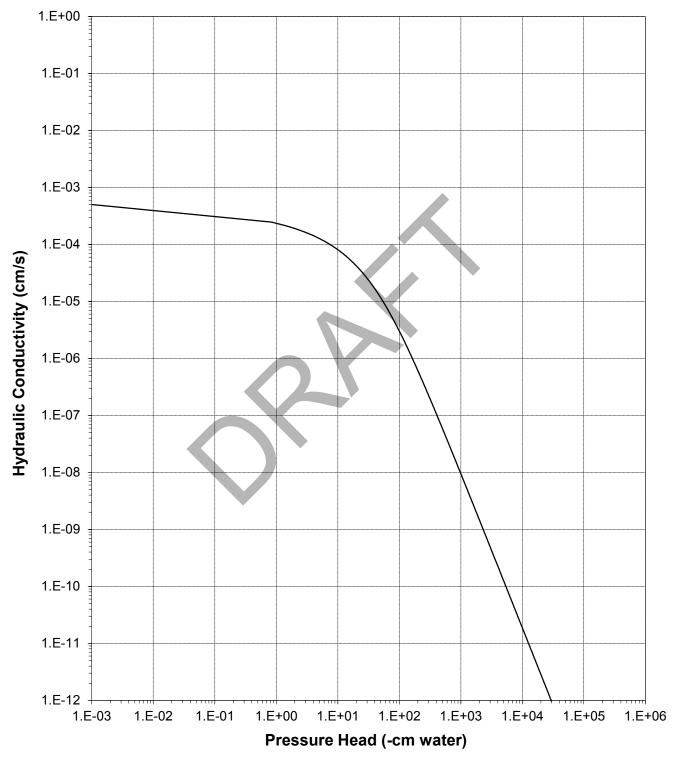

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- [#] Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

	Job Name:	Hydrometrics, Inc.
	Job Number:	LB14.0168.00
S	ample Number:	WB Borrow-1 (85%, 1.42)
	Project Name:	VVL Composite Samples
	PO Number:	12015

Split (3/4", 3/8", #4): #4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	12.36	87.64	100.00
Mass Fraction (%):	12.36	87.64	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.42	1.51
Calculated Porosity (% vol):	0.00	46.45	43.19
Volume of Solids (cm ³):	4.66	33.07	37.74
Volume of Voids (cm ³):	0.00	28.68	28.68
<i>Total Volume</i> (cm ³):	4.66	61.76	66.42
Volumetric Fraction (%):	7.02	92.98	100.00
Initial Moisture Content (% vol):	0.00	25.97	24.15
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.42	1.51
Calculated Porosity (% vol):	0.00	46.45	43.19
Volume of Solids (cm ³):	4.66	33.07	37.74
Volume of Voids (cm ³):	0.00	28.68	28.68
<i>Total Volume</i> (cm ³):	4.66	61.76	66.42
Volumetric Fraction (%):	7.02	92.98	100.00
Saturated Moisture Content (% vol):	0.00	47.42	44.09
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.42	1.51
Calculated Porosity (% vol):	0.00	46.45	43.19
Volume of Solids (cm ³):	4.66	33.07	37.74
Volume of Voids (cm ³):	0.00	28.68	28.68
<i>Total Volume</i> (cm ³):	4.66	61.76	66.42
Volumetric Fraction (%):	7.02	92.98	100.00
Residual Moisture Content (% vol):	0.00	1.94	1.80
Ksat (cm/sec):	NM	5.0E-04	4.4E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-1 (85%, 1.52)
Project Name: PO Number:	VVL Composite Samples 12015

Dry wt. of sample (g):	181.10
<i>Tare wt., ring</i> (g):	55.22
Tare wt., screen & clamp (g):	27.82
<i>Initial sample volume</i> (cm ³):	
Initial dry bulk density (g/cm³):	
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 42.77

			Weight*	Matric Potential	Moisture Content [†]
_	Date	Time	(g)	(-cm water)	(% vol)
Hanging column:	3-Sep-14	11:55	316.20	0	43.60
	10-Sep-14	13:35	316.18	8.0	43.58
	17-Sep-14	10:45	315.76	27.0	43.23
	24-Sep-14	15:30	310.12	91.0	38.50
Pressure plate:	4-Oct-14	10:45	297.78	337	28.17

	Volume Adjusted Data ¹					
					Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0					
	8.0					
	27.0	~				
	91.0					
Pressure plate:	337					

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

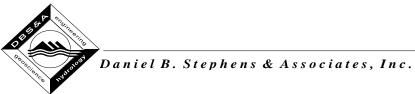
Sample Number: WB Stockpile-1 (85%, 1.52)

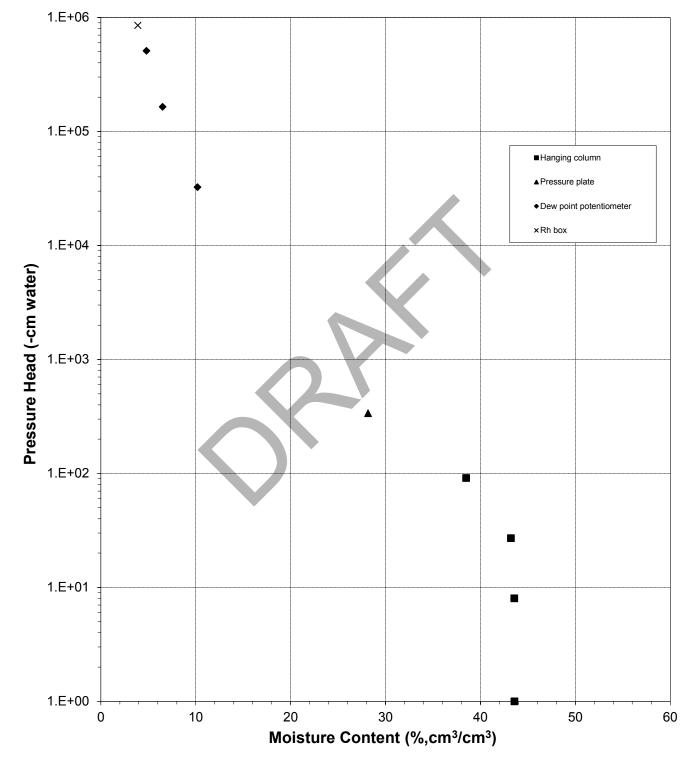
Initial sample bulk density (g/cm³): 1.52

Fraction of test sample used (<2.00mm fraction) (%): 88.43

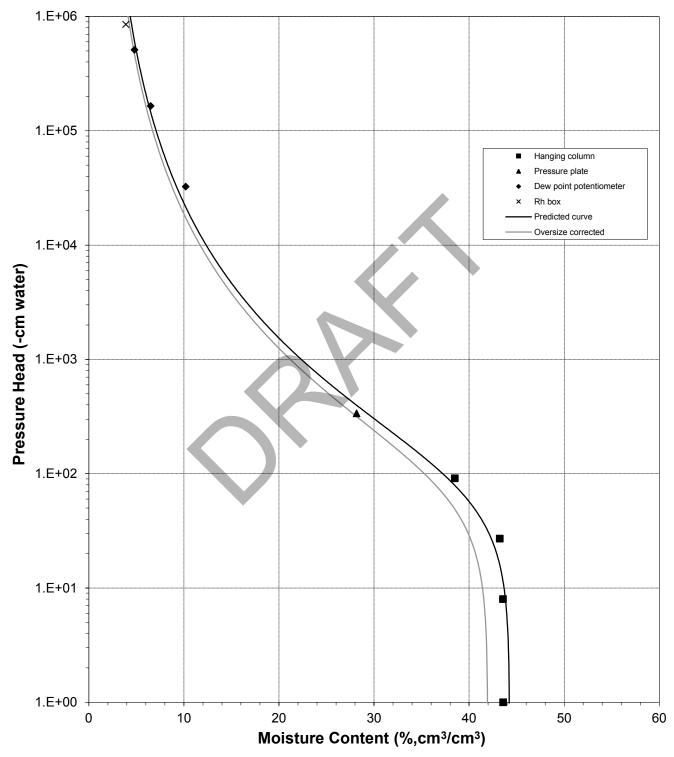
Dry weight* of dew point potentiometer sample (g): 157.01

Tare weight, jar (g): 115.17

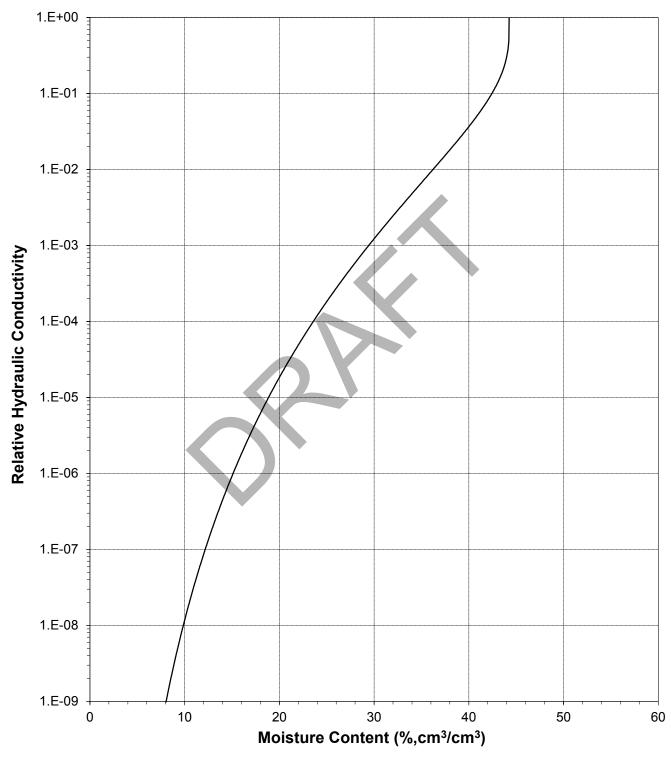

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
Dew point potentiometer:	10-Sep-14	9:30	160.19	32430	10.19
	9-Sep-14	15:07	159.04	164494	6.51
	9-Sep-14	13:50	158.51	510308	4.81
	Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	32430				
	164494				
	510308				

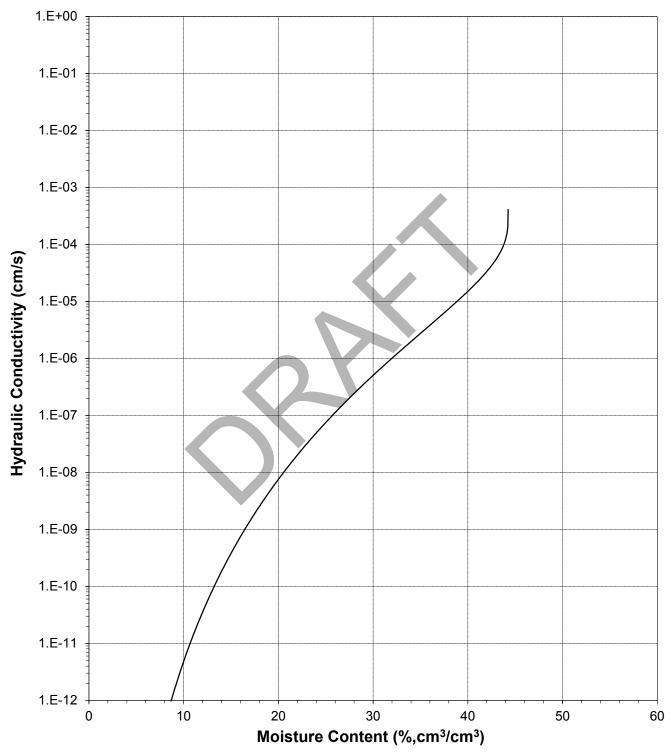

Dry weight* of relative humidity box sample (g): 60.35 Tare weight (g): 36.87

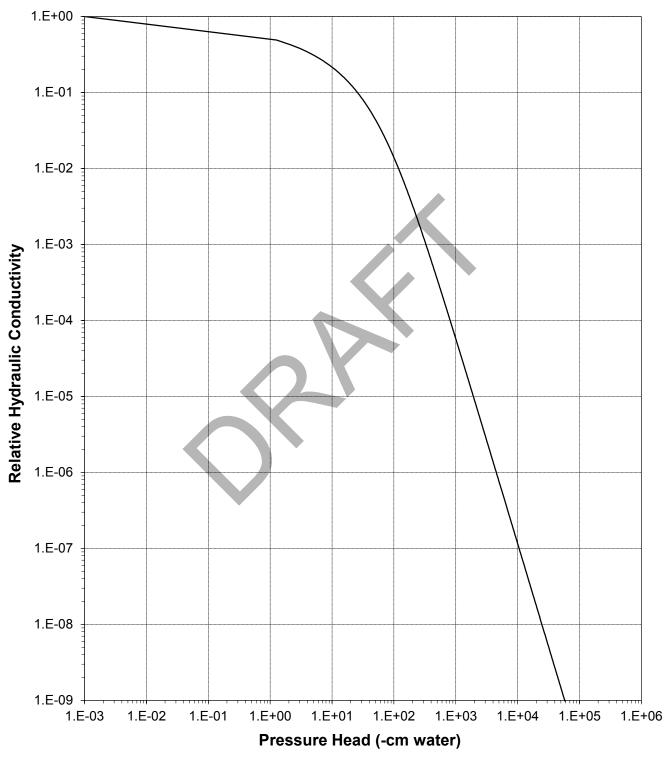
			0 (0)		
			Weight*	Water Potential	Moisture Content †
	Date	Time	(g)	(-cm water)	(% vol)
Relative humidity box:	9-Sep-14	11:00	61.03	851293	3.90
			Volume Adjust	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	851293				

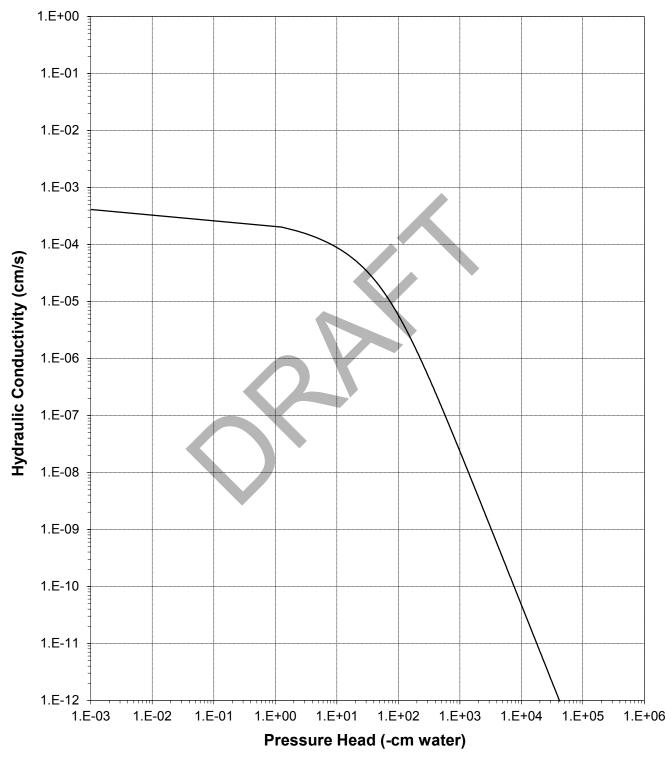

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-1 (85%, 1.52)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): #4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	8.73	91.27	100.00
Mass Fraction (%):	8.73	91.27	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.52	1.58
Calculated Porosity (% vol):	0.00	42.77	40.55
Volume of Solids (cm ³):	3.30	34.44	37.74
Volume of Voids (cm ³):	0.00	25.74	25.74
<i>Total Volume</i> (cm ³):	3.30	60.18	63.48
Volumetric Fraction (%):	5.19	94.81	100.00
Initial Moisture Content (% vol):	0.00	22.40	21.24
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.52	1.58
Calculated Porosity (% vol):	0.00	42.77	40.55
Volume of Solids (cm ³):	3.30	34.44	37.74
Volume of Voids (cm ³):	0.00	25.74	25.74
<i>Total Volume</i> (cm ³) <i>:</i>	3.30	60.18	63.48
Volumetric Fraction (%):	5.19	94.81	100.00
Saturated Moisture Content (% vol):	0.00	44.26	41.97
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.52	1.58
Calculated Porosity (% vol):	0.00	42.77	40.55
Volume of Solids (cm ³):	3.30	34.44	37.74
<i>Volume of Voids</i> (cm ³):	0.00	25.74	25.74
<i>Total Volume</i> (cm ³) <i>:</i>	3.30	60.18	63.48
Volumetric Fraction (%):	5.19	94.81	100.00
Residual Moisture Content (% vol):	0.00	1.45	1.38
Ksat (cm/sec):	NM	4.1E-04	3.8E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-2 (85%, 1.48)
Project Name: PO Number:	VVL Composite Samples 12015

Dry wt. of sample (g):	167.66
<i>Tare wt., ring</i> (g):	72.21
Tare wt., screen & clamp (g):	28.05
<i>Initial sample volume</i> (cm ³):	113.33
Initial dry bulk density (g/cm ³):	1.48
Assumed particle density (g/cm ³):	2.65

Initial calculated total porosity (%): 44.17

			Weight*	Matric Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Hanging column:	3-Sep-14	11:50	320.31	0	46.23
	10-Sep-14	13:40	320.22	8.0	46.15
	17-Sep-14	10:45	319.64	29.0	45.64
	24-Sep-14	15:30	310.13	91.0	37.25
Pressure plate:	4-Oct-14	10:45	297.10	337	25.75

	Volume Adjusted Data ¹				
					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Hanging column:	0.0				
	8.0				
	29.0	~			
	91.0				
Pressure plate:	337				

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: WB Stockpile-2 (85%, 1.48)

Initial sample bulk density (g/cm³): 1.48

Fraction of test sample used (<2.00mm fraction) (%): 73.14

Dry weight* of dew point potentiometer sample (g): 155.61

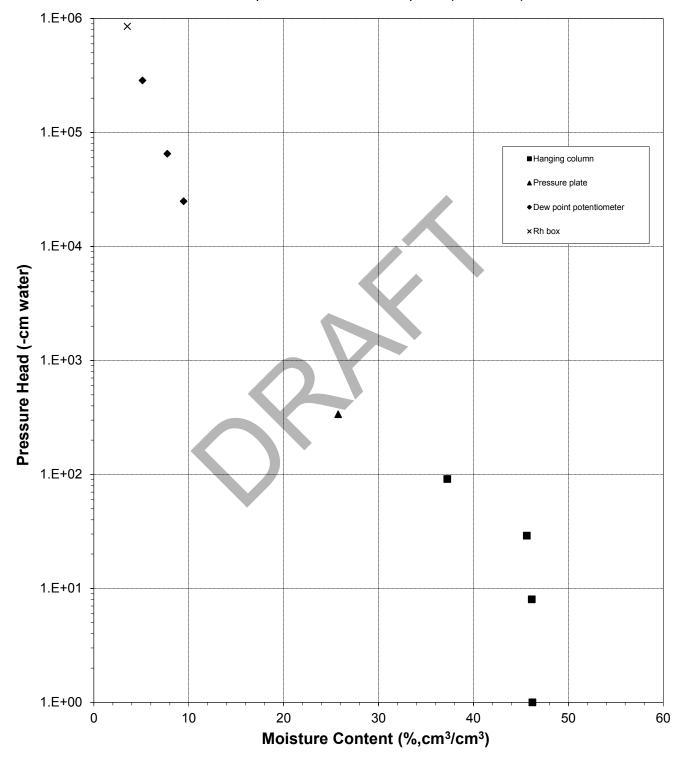
Tare weight, jar (g): 115.27

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
Dew point potentiometer:	10-Sep-14	9:05	159.14	24883	9.47
	10-Sep-14	8:20	158.50	64961	7.75
	9-Sep-14	14:15	157.52	285646	5.12
	Volume Adjusted Data ¹				
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)

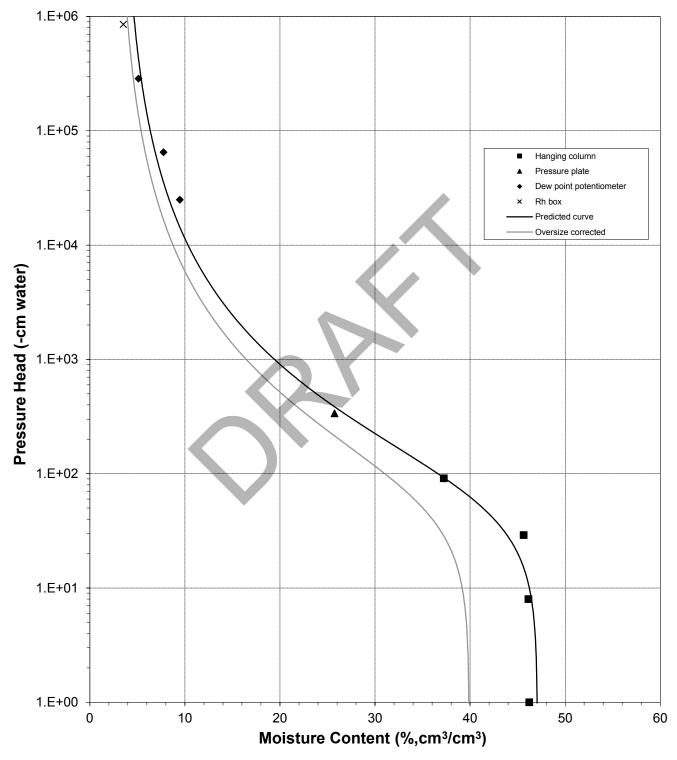
Dew point potentiometer: 24883 --- -- --- ---64961 ---- --- ---285646 ---- --- ---

Dry weight* of relative humidity box sample (g): 64.63

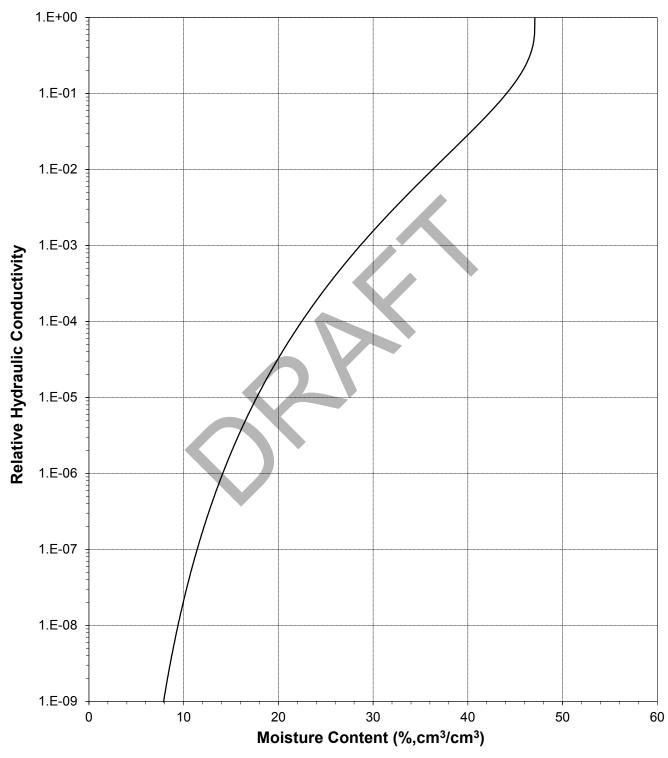
Tare weight (g): 41.90

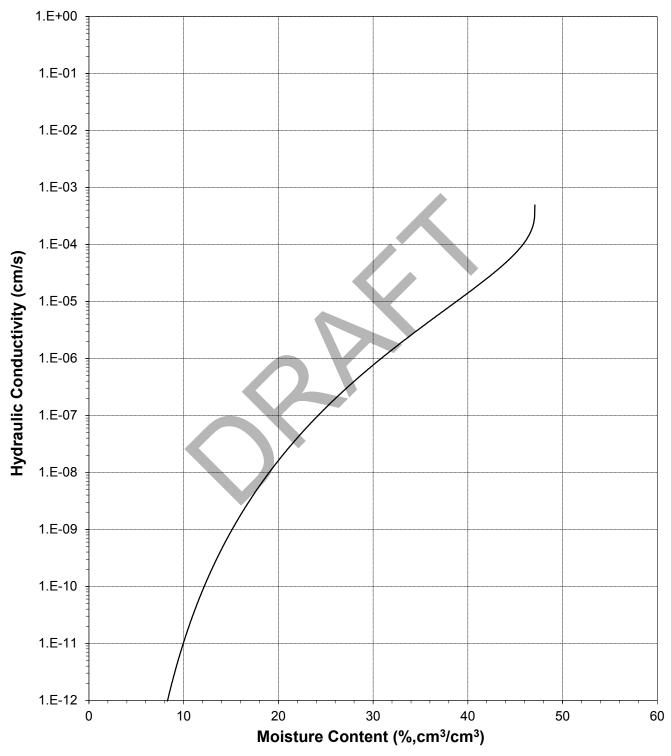

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)	
Relative humidity box:	9-Sep-14	11:00	65.37	851293	3.53	
			Volume Adjusted Data ¹			
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Relative humidity box:	851293					

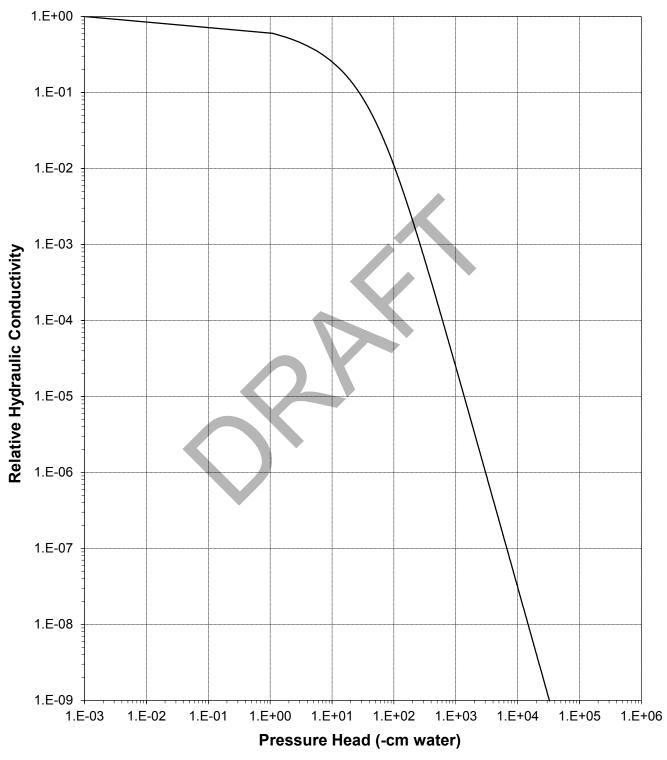
Comments:

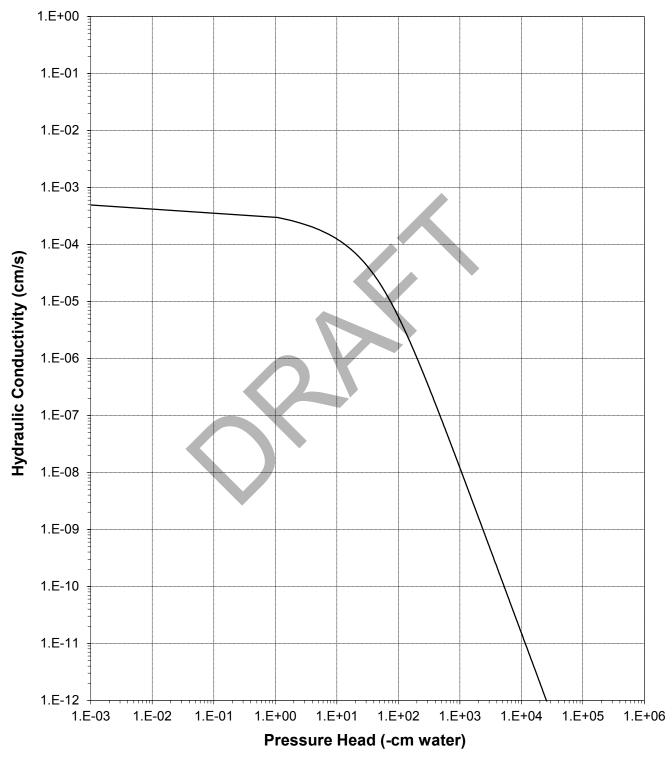

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- ⁺ Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: D. O' Dowd/D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines




Water Retention Data Points


Predicted Water Retention Curve and Data Points


Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-2 (85%, 1.48)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): #4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	24.42	75.58	100.00
Mass Fraction (%):	24.42	75.58	100.00
Initial Sample θ_i			
Bulk Density (g/cm ³):	2.65	1.48	1.66
Calculated Porosity (% vol):	0.00	44.17	37.42
Volume of Solids (cm ³):	9.21	28.52	37.74
Volume of Voids (cm ³):	0.00	22.57	22.57
<i>Total Volume</i> (cm ³):	9.21	51.09	60.30
Volumetric Fraction (%):	15.28	84.72	100.00
Initial Moisture Content (% vol):	0.00	24.52	20.77
Saturated Sample θ_s			
Bulk Density (g/cm ³):	2.65	1.48	1.66
Calculated Porosity (% vol):	0.00	44.17	37.42
Volume of Solids (cm ³):	9.21	28.52	37.74
Volume of Voids (cm ³):	0.00	22.57	22.57
<i>Total Volume</i> (cm ³):	9.21	51.09	60.30
Volumetric Fraction (%):	15.28	84.72	100.00
Saturated Moisture Content (% vol):	0.00	47.09	39.90
Residual Sample θ_r			
Bulk Density (g/cm ³):	2.65	1.48	1.66
Calculated Porosity (% vol):	0.00	44.17	37.42
Volume of Solids (cm ³):	9.21	28.52	37.74
<i>Volume of Voids</i> (cm ³):	0.00	22.57	22.57
<i>Total Volume</i> (cm ³) <i>:</i>	9.21	51.09	60.30
Volumetric Fraction (%):	15.28	84.72	100.00
Residual Moisture Content (% vol):	0.00	3.35	2.83
Ksat (cm/sec):	NM	4.9E-04	3.7E-04

* = Porosity and moisture content of coarse fraction assumed to be zero.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

NM = Not measured

Moisture Retention Data

Hanging Column / Pressure Plate

(Soil-Water Characteristic Curve)

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	Topsoil-1 (85%, 1.10)
Project Name:	VVL Composite Samples
PO Number:	12015

Dry wt. of sample (g): 247.04 Tare wt., ring (g): 133.75 Tare wt., screen & clamp (g): 27.21

- Initial sample volume (cm³): 224.14
- Initial dry bulk density (g/cm³): 1.10

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 58.41

				Matric	Moisture
			Weight*	Potential	Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Hanging column:	3-Sep-14	12:00	539.82	0	58.81
	10-Sep-14	13:30	538.50	9.0	58.22
	17-Sep-14	10:30	538.08	30.0	58.04
	24-Sep-14	15:20	512.10	103.0	46.45
Pressure plate:	3-Oct-14	16:25	481.65	337	32.86

	Volume Adjusted Data ¹					
		Adjusted				
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Hanging column:	0.0					
	9.0					
	30.0					
	103.0					
Pressure plate:	337					

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent each of the volume change measurements obtained after saturated hydraulic conductivity testing and throughout hanging column/pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares

[†] Assumed density of water is 1.0 g/cm³

⁺⁺ Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer / Relative Humidity Box

(Soil-Water Characteristic Curve)

Sample Number: Topsoil-1 (85%, 1.10)

Initial sample bulk density (g/cm³): 1.10

Fraction of test sample used (<2.00mm fraction) (%): 96.44

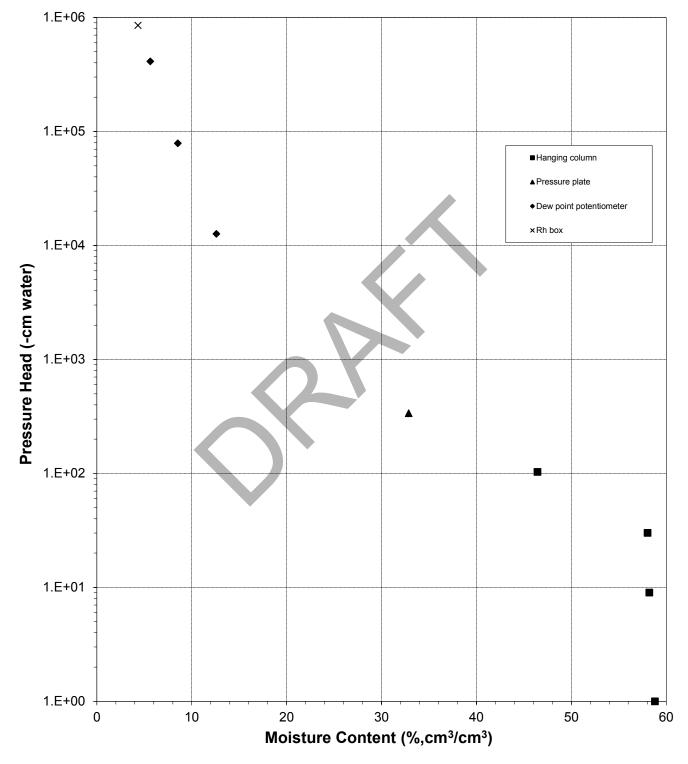
Dry weight* of dew point potentiometer sample (g): 143.78

Tare weight, jar (g): 112.67

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
Dew point potentiometer:	10-Sep-14	9:55	147.47	12646	12.61
	9-Sep-14	15:07	146.28	78729	8.54
	9-Sep-14	13:33	145.43	412101	5.64
		Volume Adjusted Data ¹			
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Dew point potentiometer:	12646	🤇			
	78729				
	412101				

Dry weight* of relative humidity box sample (g): 62.95 4

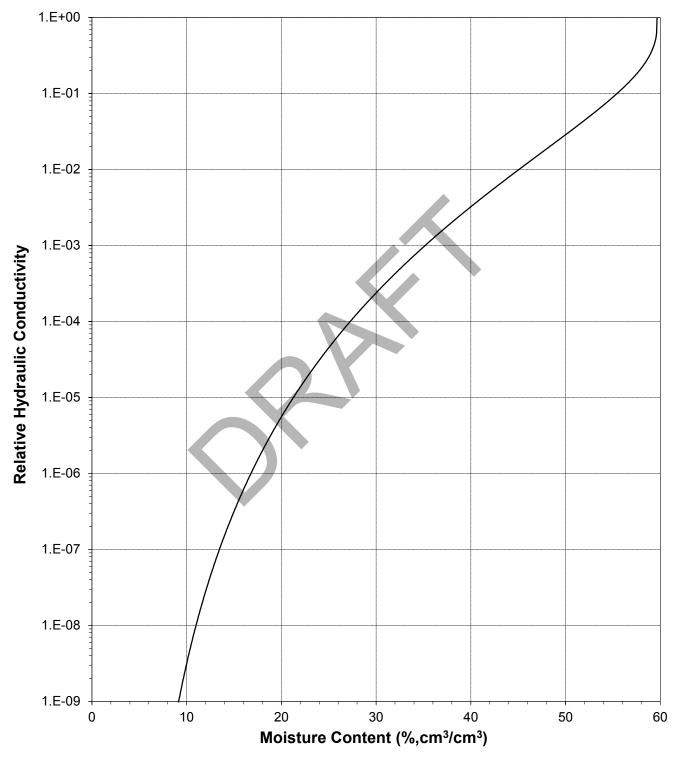
Tare	weight	(g):	41.74

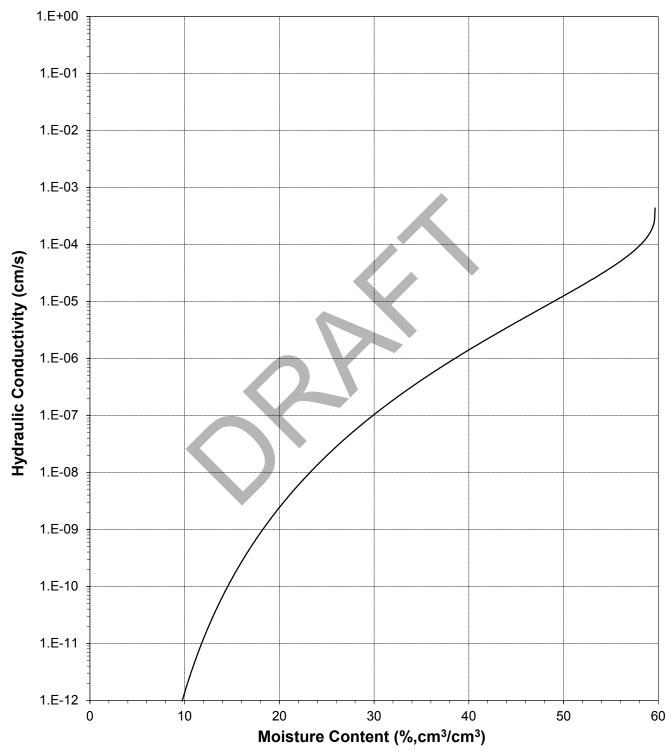

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
Relative humidity box:	9-Sep-14	11:00	63.82	851293	4.34
			Volume Adjust	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Relative humidity box:	851293				

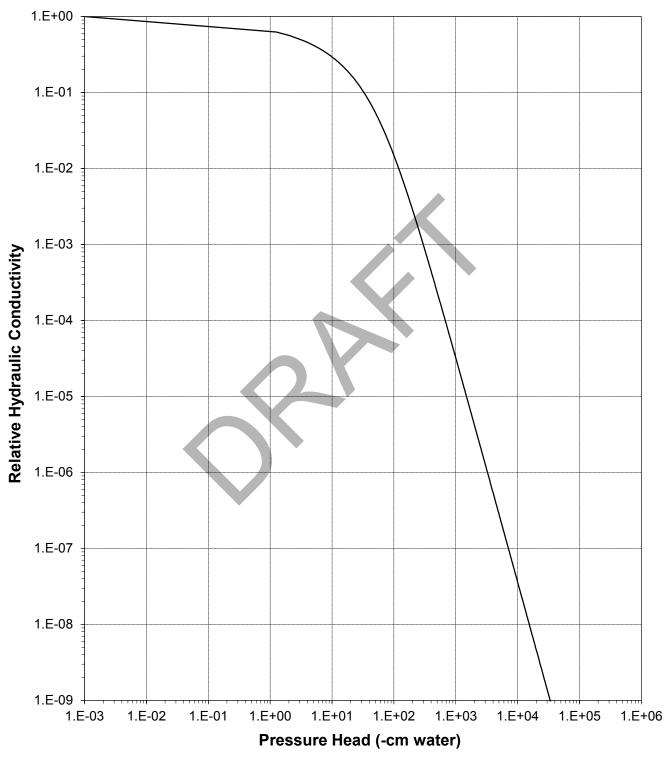
Comments:

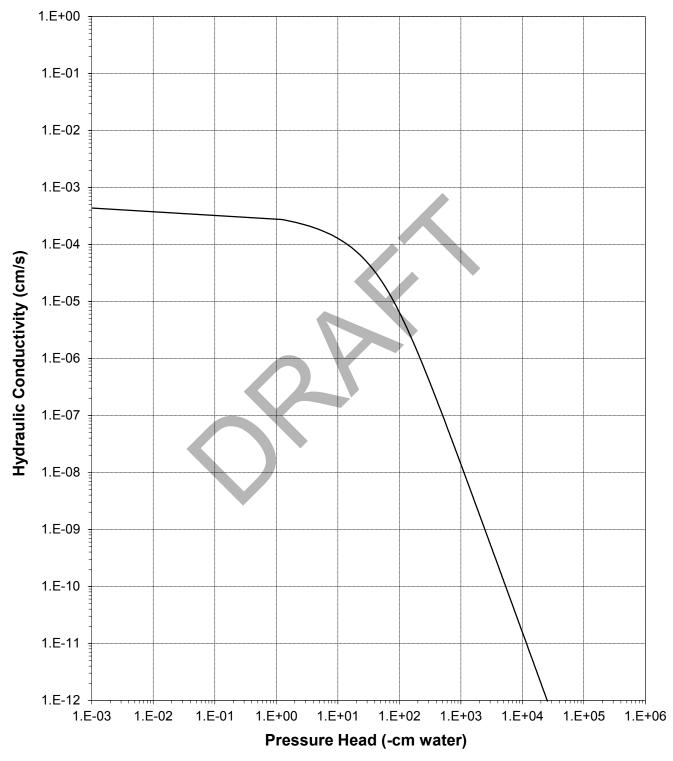

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- [#] Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Laboratory analysis by: D. O' Dowd/D. O'Dowd Data entered by: D. O'Dowd Checked by: J. Hines




Water Retention Data Points


Predicted Water Retention Curve and Data Points

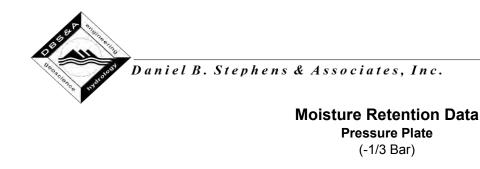

Plot of Relative Hydraulic Conductivity vs Moisture Content

Plot of Hydraulic Conductivity vs Moisture Content

Plot of Relative Hydraulic Conductivity vs Pressure Head

Plot of Hydraulic Conductivity vs Pressure Head

Water Holding Capacity



Summary of Moisture Retention (-1/3 Bar, -15 Bar, and Water Holding Capacity*)

					Oversize Correct	ted
	-1/3 Bar Point	-15 Bar Point	Water	-1/3 Bar Point	-15 Bar Point	Water
	Volumetric	Volumetric	Holding Capacity	Volumetric	Volumetric	Holding Capacity
Sample Number	(%, cm ³ /cm ³)					
VVL Composite 0-10						
(85%, 1.46)	34.7	12.2	22.5	29.8	10.5	19.4
VVL Composite 11-						
15 (85%, 1.50)	27.2	8.1	19.2	24.0	7.1	16.9
VVL Composite 16-						
20 (85%, 1.45)	34.7	12.6	22.1	31.7	11.5	20.2
VVL Composite 21-						
30 (85%, 1.38)	36.0	13.3	22.7	31.7	11.7	20.0
VVL Composite 31+						
(85%, 1.22)	46.6	21.5	25.0	43.8	20.2	23.6
VVL Composite TP-						
10 (85%, 1.51)	24.1	8.3	15.8	20.7	7.1	13.6
VVL Composite TP-						
12 (85%, 1.40)	36.9	14.6	22.2	32.4	12.9	19.6
VVL Composite TP-	00 ((.
13 (85%, 1.37)	38.1	15.1	23.0	35.4	14.0	21.4
WB Borrow-1 (85%,	00.4	44.0	45.4	04.5	10.0	44.0
1.42)	26.4	11.0	15.4	24.5	10.3	14.3
WB Stockpile-1	20.2	44.4	47 4	06.7	10 E	16.0
(85%, 1.52)	28.2	11.1	17.1	26.7	10.5	16.2
WB Stockpile-2	25.7	0.2	16.4	21.8	7.9	13.9
(85%, 1.48) Topsoil-1 (85%,	20.1	9.3	10.4	21.0	1.9	13.9
1.10)	32.9	11.0	21.9			
1.10	52.5	11.0	21.3			

*Water Holding Capacity (WHC) is defined here as the difference in the moisture content of the sample at -1/3 bar of water potential (commonly referred to as 'Field Capacity') and the moisture content of the sample at -15 bars of water potential (commonly referred to as 'Wilting Point').

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 0-10 (85%, 1.46) Project Name: VVL Composite Samples PO Number: 12015 Dry wt. of sample (g): 3181.06 Tare wt., ring (g): 265.08

Tare wt., screen & clamp (g): 48.27

Initial sample volume (cm³): 2175.34

Initial dry bulk density (g/cm³): 1.46

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 44.82

				Matric	Moisture
			Weight*	Potential	Content [™]
	Date	Time	(g)	(-cm water)	(% vol)
Pressure plate:	8-Oct-14	13:05	4248.60	337	34.67

Volume Ad	justed	Data

				*	Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Pressure plate:	337				
-					

Moisture content at -1/3 bar (% cm ³ /cm ³):	34.7
Oversize corrected moisture content at -1/3 bar (% cm ³ /cm ³):	29.8

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 0-10 (85%, 1.46) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.46 Fraction of test sample used (<2.00mm fraction) (%): 52.36

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
-15 bar ³ :	NA	NA	NA	15297	12.17
-					
			Volume Adjuste	d Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
-15 bar ³ :	15297				
		Moisture c	ontent at -15 ba	ars (% cm³/cm³):	12.2

Oversize corrected moisture content at -15 bars (% cm³/cm³): 10.5

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

OF SCALL

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 0-10 (85%, 1.46)
Project Name:	VVL Composite Samples
PO Number:	12015
Split (3/4", 3/8", #4):	3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	22.66	77.34	100.00
Mass Fraction (%):	22.66	77.34	100.00
Initial Sample			
Bulk Density (g/cm ³):	2.65	1.46	1.63
Calculated Porosity (% vol):	0.00	44.82	38.58
Volume of Solids (cm ³):	8.55	29.19	37.74
Volume of Voids (cm ³):	0.00	23.70	23.70
<i>Total Volume</i> (cm ³):	8.55	52.89	61.44
Volumetric Fraction (%):	13.91	86.09	100.00
Initial Moisture Content (% vol):	0.00	24.10	20.75
Sample at -1/3 Bar		N	
Bulk Density (g/cm ³):	2.65	1.46	1.63
Calculated Porosity (% vol):	0.00	44.82	44.82
Volume of Solids (cm ³):	8.55	29.19	37.74
Volume of Voids (cm ³):	0.00	23.70	23.70
<i>Total Volume</i> (cm ³):	8.55	52.89	61.44
Volumetric Fraction (%):	13.91	86.09	100.00
Moisture Content (% vol):	0.00	34.67	29.85
Sample at -15 Bar			
Bulk Density (g/cm ³):	2.65	1.46	1.63
Calculated Porosity (% vol):	0.00	44.82	44.82
Volume of Solids (cm ³):	8.55	29.19	37.74
Volume of Voids (cm ³):	0.00	23.70	23.70
<i>Total Volume</i> (cm ³):	8.55	52.89	61.44
Volumetric Fraction (%):	13.91	86.09	100.00
Moisture Content (% vol):	0.00	12.17	10.47
Ksat (cm/sec):	NA	2.9E-04	2.2E-04

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 11-15 (85%, 1.50) Project Name: VVL Composite Samples PO Number: 12015 Dry wt. of sample (g): 3332.92 Tare wt., ring (g): 270.65

Tare wt., screen & clamp (g): 57.66

Initial sample volume (cm³): 2220.20

Initial dry bulk density (g/cm³): 1.50

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 43.35

				Matric	Moisture	
			Weight*	Potential	Content [†]	
_	Date	Time	(g)	(-cm water)	(% vol)	_
Pressure plate:	9-Oct-14	7:40	4259.00	337	27.24	+ ‡

Volume A	djus	ted	Da

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Pressure plate:	337	2194.13	-1.17%	1.52	42.68

		Moisture content at -1/3 bar (% cm ³ /cm ³):	27.2
--	--	---	------

Oversize corrected moisture content at -1/3 bar (% cm³/cm³): 24.0

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 11-15 (85%, 1.50) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.50 Fraction of test sample used (<2.00mm fraction) (%): 56.44

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
-15 bar ³ :	NA	NA	NA	15297	8.08	
_						_
			Volume Adjuste	d Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
-15 bar ³ :	15297	2194.13	-1.17%	1.52	42.68	_
_						_

Moisture content at -15 bars (% cm³/cm³): 8.1

Oversize corrected moisture content at -15 bars (% cm³/cm³): 7.1

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

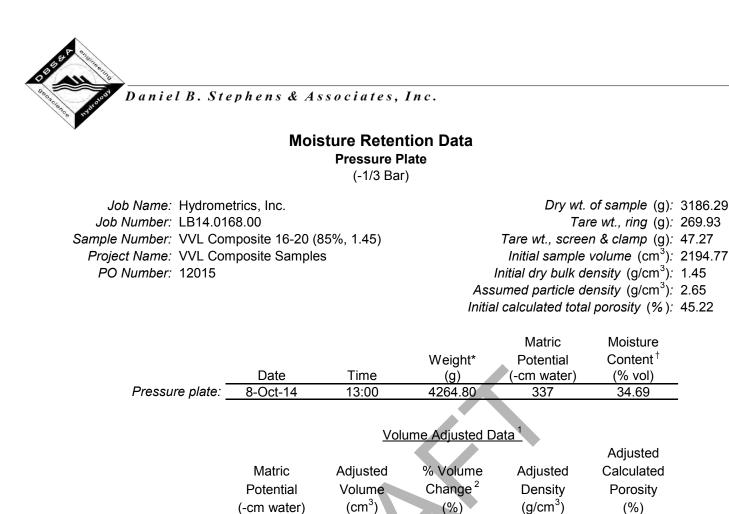
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

OF SCALL

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 11-15 (85%, 1.50)
Project Name:	VVL Composite Samples
PO Number:	12015


Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	18.97	81.03	100.00
Mass Fraction (%):	18.97	81.03	100.00
Initial Sample			
Bulk Density (g/cm ³):	2.65	1.50	1.64
Calculated Porosity (% vol):	0.00	43.35	38.28
Volume of Solids (cm ³):	7.16	30.58	37.74
Volume of Voids (cm ³):	0.00	23.40	23.40
<i>Total Volume</i> (cm ³):	7.16	53.98	61.14
Volumetric Fraction (%):	11.71	88.29	100.00
Initial Moisture Content (% vol):	0.00	20.94	18.49
Sample at -1/3 Bar			
Bulk Density (g/cm ³):	2.65	1.52	1.65
Calculated Porosity (% vol):	0.00	42.68	42.68
Volume of Solids (cm ³):	7.16	30.58	37.74
Volume of Voids (cm ³):	0.00	22.77	22.77
<i>Total Volume</i> (cm ³):	7.16	53.34	60.50
Volumetric Fraction (%):	11.83	88.17	100.00
Moisture Content (% vol):	0.00	27.24	24.02
Sample at -15 Bar			
<i>Bulk Density</i> (g/cm ³):	2.65	1.52	1.65
Calculated Porosity (% vol):	0.00	42.68	42.68
Volume of Solids (cm ³):	7.16	30.58	37.74
Volume of Voids (cm ³):	0.00	22.77	22.77
<i>Total Volume</i> (cm ³):	7.16	53.34	60.50
Volumetric Fraction (%):	11.83	88.17	100.00
Moisture Content (% vol):	0.00	8.08	7.13
Ksat (cm/sec):	NA	1.5E-03	1.2E-03

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Comments:

¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.

Oversize corrected moisture content at -1/3 bar (% cm³/cm³):

Moisture content at -1/3 bar (% cm³/cm³):

² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

Pressure plate:

337

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Laboratory analysis by: D. O'Dowd Data entered by: C. Krous Checked by: J. Hines 34.7

31.7

Moisture Retention Data

Dew Point Potentiometer

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 16-20 (85%, 1.45) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.45 Fraction of test sample used (<2.00mm fraction) (%): 57.04

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
-15 bar ³ :	NA	NA	NA	15297	12.57
-					
			Volume Adjuste	d Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
-15 bar ³ :	15297				
		Moisture co	ontent at -15 ba	ars (% cm³/cm³):	12.6

Oversize corrected moisture content at -15 bars (% cm³/cm³): 11.5

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

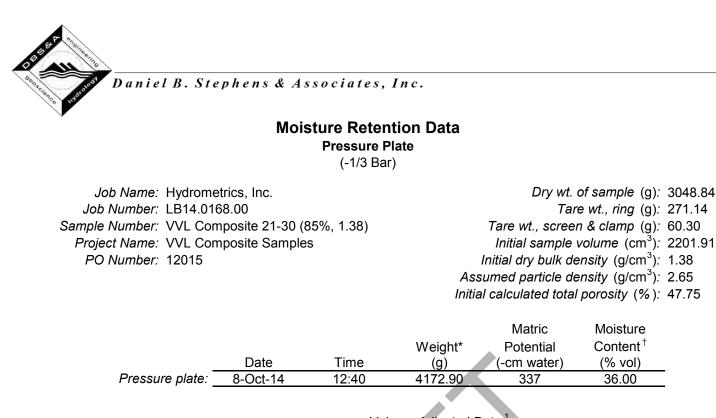
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

OF SCALL

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 16-20 (85%, 1.45)
Project Name:	VVL Composite Samples
PO Number:	12015


Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	14.48	85.52	100.00
Mass Fraction (%):	14.48	85.52	100.00
Initial Sample			
Bulk Density (g/cm ³):	2.65	1.45	1.55
Calculated Porosity (% vol):	0.00	45.22	41.38
Volume of Solids (cm ³):	5.46	32.27	37.74
Volume of Voids (cm ³):	0.00	26.64	26.64
<i>Total Volume</i> (cm ³):	5.46	58.91	64.37
Volumetric Fraction (%):	8.49	91.51	100.00
Initial Moisture Content (% vol):	0.00	24.76	22.66
Sample at -1/3 Bar			
Bulk Density (g/cm ³):	2.65	1.45	1.55
Calculated Porosity (% vol):	0.00	45.22	45.22
Volume of Solids (cm ³):	5.46	32.27	37.74
Volume of Voids (cm ³):	0.00	26.64	26.64
Total Volume (cm³):	5.46	58.91	64.37
Volumetric Fraction (%):	8.49	91.51	100.00
Moisture Content (% vol):	0.00	34.69	31.74
Sample at -15 Bar			
<i>Bulk Density</i> (g/cm ³):	2.65	1.45	1.55
Calculated Porosity (% vol):	0.00	45.22	45.22
Volume of Solids (cm ³):	5.46	32.27	37.74
Volume of Voids (cm ³):	0.00	26.64	26.64
<i>Total Volume</i> (cm ³):	5.46	58.91	64.37
Volumetric Fraction (%):	8.49	91.51	100.00
Moisture Content (% vol):	0.00	12.57	11.50
Ksat (cm/sec):	NA	5.3E-04	4.5E-04

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

	Volume Adjusted Data					
				Ÿ	Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Pressure plate:	337					
-						

Moisture content at -1/3 bar (% cm ³ /cm ³):	36.0
Oversize corrected moisture content at -1/3 bar (% cm³/cm³):	31.7

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 21-30 (85%, 1.38) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.38 Fraction of test sample used (<2.00mm fraction) (%): 56.28

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
-15 bar ³ : _	NA	NA	NA	15297	13.30
_					
			Volume Adjuste	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
-15 bar ³ :	15297				
		Moisture co	ontent at -15 ba	ars (% cm³/cm³):	13.3

Oversize corrected moisture content at -15 bars (% cm³/cm³): 11.7

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.
- * Weight including tares
- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

OF SCALL

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name: Hydrometrics, Inc.

Job Number: LB14.0168.00 Sample Number: VVL Composite 21-30 (85%, 1.38) Project Name: VVL Composite Samples PO Number: 12015				
	Split (3/4", 3/8", #4):	3/4		
	Coarse Fraction*	Fines Fraction**	<u>Composite</u>	
Subsample Mass (g): Mass Fraction (%):	20.52 20.52	79.48 79.48	100.00 100.00	
Initial Sample				
Bulk Density (g/cm ³):	2.65	1.38	1.54	
Calculated Porosity (% vol):	0.00	47.75	42.07	
Volume of Solids (cm ³):	7.74	29.99	37.74	
Volume of Voids (cm ³):	0.00	27.41	27.41	
Total Volume (cm ³):	7.74	57.40	65.14	
Volumetric Fraction (%):	11.89	88.11	100.00	
Initial Moisture Content (% vol):	0.00	25.09	22.11	
Sample at -1/3 Bar				
Bulk Density (g/cm ³):	2.65	1.38	1.54	
Calculated Porosity (% vol):	0.00	47.75	47.75	
Volume of Solids (cm ³):	7.74	29.99	37.74	
Volume of Voids (cm ³):	0.00	27.41	27.41	
Total Volume (cm³):	7.74	57.40	65.14	
Volumetric Fraction (%):	11.89	88.11	100.00	
Moisture Content (% vol):	0.00	36.00	31.72	
Sample at -15 Bar				
Bulk Density (g/cm ³):	2.65	1.38	1.54	
Calculated Porosity (% vol):	0.00	47.75	47.75	
Volume of Solids (cm ³):	7.74	29.99	37.74	
Volume of Voids (cm ³):	0.00	27.41	27.41	
<i>Total Volume</i> (cm ³):	7.74	57.40	65.14	
Volumetric Fraction (%):	11.89	88.11	100.00	
Moisture Content (% vol):	0.00	13.30	11.72	
Ksat (cm/sec):	NA	3.3E-04	2.6E-04	

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 31+ (85%, 1.22) Project Name: VVL Composite Samples PO Number: 12015 Dry wt. of sample (g): 2700.23

Tare wt., ring (g): 272.82

Tare wt., screen & clamp (g): 67.12

Initial sample volume (cm³): 2217.25

Initial dry bulk density (g/cm³): 1.22

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 54.04

	Data	Time	Weight*	Matric Potential	Moisture Content [†] (% vol)
Dressure platar	Date	_	(g)	(-cm water)	· /
Pressure plate: _	4-Oct-14	10:45	4072.50	337	46.56

Vo	lume Ad	justed	Data

				•	Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Pressure plate:	337				
-					

Moisture content at -1/3 bar (% cm³/cm³):	46.6
Oversize corrected moisture content at -1/3 bar (% cm ³ /cm ³):	43.8

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 31+ (85%, 1.22) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.22 Fraction of test sample used (<2.00mm fraction) (%): 78.45

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
-15 bar ³ :	NA	NA	NA	15297	21.51
			Volume Adjuste	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
-15 bar ³ :	15297				
		Moisture co	ontent at -15 ba	ars (% cm³/cm³):	21.5

Oversize corrected moisture content at -15 bars (% cm³/cm³): 20.2

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

OF SCALL

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 31+ (85%, 1.22)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	12.02	87.98	100.00
Mass Fraction (%):	12.02	87.98	100.00
Initial Sample			
Bulk Density (g/cm ³):	2.65	1.22	1.30
Calculated Porosity (% vol):	0.00	54.04	50.85
Volume of Solids (cm ³):	4.54	33.20	37.74
Volume of Voids (cm ³):	0.00	39.04	39.04
<i>Total Volume</i> (cm ³):	4.54	72.24	76.78
Volumetric Fraction (%):	5.91	94.09	100.00
Initial Moisture Content (% vol):	0.00	33.05	31.10
Sample at -1/3 Bar			
Bulk Density (g/cm ³):	2.65	1.22	1.30
Calculated Porosity (% vol):	0.00	54.04	54.04
Volume of Solids (cm ³):	4.54	33.20	37.74
Volume of Voids (cm ³):	0.00	39.04	39.04
Total Volume (cm³):	4.54	72.24	76.78
Volumetric Fraction (%):	5.91	94.09	100.00
Moisture Content (% vol):	0.00	46.56	43.81
Sample at -15 Bar			
<i>Bulk Density</i> (g/cm ³):	2.65	1.22	1.30
Calculated Porosity (% vol):	0.00	54.04	54.04
Volume of Solids (cm ³):	4.54	33.20	37.74
Volume of Voids (cm ³):	0.00	39.04	39.04
<i>Total Volume</i> (cm ³):	4.54	72.24	76.78
Volumetric Fraction (%):	5.91	94.09	100.00
Moisture Content (% vol):	0.00	21.51	20.24
Ksat (cm/sec):	NA	1.1E-04	9.5E-05

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-10 (85%, 1.51) Project Name: VVL Composite Samples PO Number: 12015

- Dry wt. of sample (g): 3342.18
 - Tare wt., ring (g): 272.60
- Tare wt., screen & clamp (g): 53.78
- *Initial sample volume* (cm³): 2220.60
- *Initial dry bulk density* (g/cm³): 1.51
- Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 43.20

				Matric	Moisture	
			Weight*	Potential	Content [†]	
_	Date	Time	(g)	(-cm water)	(% vol)	_
Pressure plate:	4-Oct-14	10:30	4174.90	337	24.15	‡ ‡

Volu	me Ad	justed	Da
-			

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Pressure plate:	337	2096.96	-5.57%	1.59	39.86
-					

Moisture content at -1	/3 bar (%	են cm³/cm³)	: 24.1

Oversize corrected moisture content at -1/3 bar (% cm³/cm³): 20.7

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-10 (85%, 1.51) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.51 Fraction of test sample used (<2.00mm fraction) (%): 63.04

			Weight*	Water Potential	Moisture Content ⁺	
	Date	Time	(g)	(-cm water)	(% vol)	
-15 bar ³ :	NA	NA	NA	15297	8.31	‡‡
_						
		,	Volume Adjuste	d Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
-15 bar ³ : _	15297	2096.96	-5.57%	1.59	39.86	
_						

Moisture content at -15 bars (% cm³/cm³): 8.3

Oversize corrected moisture content at -15 bars (% cm³/cm³): 7.1

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

OF SCALL

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name: Hydrometrics, Inc.

	Job Number: LB14.0168.00 Sample Number: VVL Composite TP-10 (85%, 1.51) Project Name: VVL Composite Samples PO Number: 12015				
	Split (3/4", 3/8", #4):	3/4			
	Coarse Fraction*	Fines Fraction**	<u>Composite</u>		
Subsample Mass (g): Mass Fraction (%):	21.58 21.58	78.42 78.42	100.00 100.00		
Initial Sample					
Bulk Density (g/cm ³):	2.65	1.51	1.66		
Calculated Porosity (% vol):	0.00	43.20	37.36		
Volume of Solids (cm ³):	8.14	29.59	37.74		
Volume of Voids (cm_{3}^{3}) :	0.00	22.51	22.51		
Total Volume (cm ³):	8.14	52.10	60.25		
Volumetric Fraction (%):	13.52	86.48	100.00		
Initial Moisture Content (% vol):	0.00	23.65	20.46		
Sample at -1/3 Bar					
Bulk Density (g/cm ³):	2.65	1.59	1.74		
Calculated Porosity (% vol):	0.00	39.86	39.86		
Volume of Solids (cm ³):	8.14	29.59	37.74		
Volume of Voids (cm ³):	0.00	19.61	19.61		
Total Volume (cm³):	8.14	49.20	57.34		
Volumetric Fraction (%):	14.20	85.80	100.00		
Moisture Content (% vol):	0.00	24.15	20.72		
Sample at -15 Bar					
Bulk Density (g/cm ³):	2.65	1.59	1.74		
Calculated Porosity (% vol):	0.00	39.86	39.86		
Volume of Solids (cm ³):	8.14	29.59	37.74		
Volume of Voids (cm ³):	0.00	19.61	19.61		
<i>Total Volume</i> (cm ³):	8.14	49.20	57.34		
Volumetric Fraction (%):	14.20	85.80	100.00		
Moisture Content (% vol):	0.00	8.31	7.13		
Ksat (cm/sec):	NA	2.5E-03	2.0E-03		

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-12 (85%, 1.40) Project Name: VVL Composite Samples PO Number: 12015 Dry wt. of sample (g): 3091.19

Tare wt., ring (g): 270.01

- Tare wt., screen & clamp (g): 56.79
- *Initial sample volume* (cm³): 2203.81
- *Initial dry bulk density* (g/cm³): 1.40
- Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 47.07

				Matric	Moisture	
			Weight*	Potential	Content [†]	
_	Date	Time	(g)	(-cm water)	(% vol)	_
Pressure plate:	4-Oct-14	10:37	4184.50	337	36.86	‡‡

1	Volun	ne .	Adi	usted	Da

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Pressure plate:	337	2079.65	-5.63%	1.49	43.91
-					

Moisture content at -1/3 bar (% cm ³ /cm ³):	36.9

Oversize corrected moisture content at -1/3 bar (% cm³/cm³): 32.4

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-12 (85%, 1.40) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.40 Fraction of test sample used (<2.00mm fraction) (%): 60.23

			Weight*	Water Potential	Moisture Content [†]	
	Date	Time	(g)	(-cm water)	(% vol)	
-15 bar ³ :	NA	NA	NA	15297	14.62	‡ ‡
_						_
		-	Volume Adjuste	<u>d Data ¹</u>		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
-15 bar ³ :	15297	2079.65	-5.63%	1.49	43.91	
_						

Moisture content at -15 bars (% cm³/cm³): 14.6

Oversize corrected moisture content at -15 bars (% cm³/cm³): 12.9

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

OF SCALL

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-12 (85%, 1.40)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	19.61	80.39	100.00
Mass Fraction (%):	19.61	80.39	100.00
Initial Sample			
Bulk Density (g/cm ³):	2.65	1.40	1.55
Calculated Porosity (% vol):	0.00	47.07	41.69
Volume of Solids (cm ³):	7.40	30.33	37.74
Volume of Voids (cm ³):	0.00	26.98	26.98
<i>Total Volume</i> (cm ³):	7.40	57.31	64.71
Volumetric Fraction (%):	11.44	88.56	100.00
Initial Moisture Content (% vol):	0.00	26.07	23.09
Sample at -1/3 Bar			
Bulk Density (g/cm ³):	2.65	1.49	1.63
Calculated Porosity (% vol):	0.00	43.91	43.91
Volume of Solids (cm ³):	7.40	30.33	37.74
Volume of Voids (cm ³):	0.00	23.75	23.75
<i>Total Volume</i> (cm ³):	7.40	54.08	61.48
Volumetric Fraction (%):	12.04	87.96	100.00
Moisture Content (% vol):	0.00	36.86	32.42
Sample at -15 Bar			
Bulk Density (g/cm ³):	2.65	1.49	1.63
Calculated Porosity (% vol):	0.00	43.91	43.91
Volume of Solids (cm ³):	7.40	30.33	37.74
Volume of Voids (cm ³):	0.00	23.75	23.75
<i>Total Volume</i> (cm ³):	7.40	54.08	61.48
Volumetric Fraction (%):	12.04	87.96	100.00
Moisture Content (% vol):	0.00	14.62	12.86
Ksat (cm/sec):	NA	1.2E-04	9.6E-05

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-13 (85%, 1.37) Project Name: VVL Composite Samples PO Number: 12015 Dry wt. of sample (g): 3086.05 Tare wt., ring (g): 275.53

Tare wt., screen & clamp (g): 55.27

Initial sample volume (cm³): 2250.16

Initial dry bulk density (g/cm³): 1.37

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 48.25

				Matric	Moisture	
			Weight*	Potential	Content [†]	
_	Date	Time	(g)	(-cm water)	(% vol)	
Pressure plate:	8-Oct-14	12:48	4289.80	337	38.10	‡‡

Volume Adjusted Data

					Adjusted	
	Matric	Adjusted	% Volume	Adjusted	Calculated	
	Potential	Volume	Change ²	Density	Porosity	
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
Pressure plate:	337	2291.03	+1.82%	1.35	49.17	-
-						-

Moisture content at -1/3 bar (% cm ³ /cm ³):	38.1
	00.1

Oversize corrected moisture content at -1/3 bar (% cm³/cm³): 35.4

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture Retention Data

Dew Point Potentiometer

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-13 (85%, 1.37) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.37 Fraction of test sample used (<2.00mm fraction) (%): 65.88

	Date	Time	Weight*	Water Potential	Moisture Content [†]	
		-	(g)	(-cm water)	(% vol)	_
-15 bar ³ :	NA	NA	NA	15297	15.07	‡ ‡
_						_
		<u>_</u>	Volume Adjuste	d Data ¹		
	Water	Adjusted	% Volume	Adjusted	Adjusted	
	Potential	Volume	Change ²	Density	Calc. Porosity	
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)	
-15 bar ³ :	15297	2291.03	+1.82%	1.35	49.17	

Moisture content at -15 bars (% cm³/cm³): 15.1

Oversize corrected moisture content at -15 bars (% cm³/cm³): 14.0

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

OF SCALL

Daniel B. Stephens & Associates, Inc.

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-13 (85%, 1.37)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): 3/4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	13.14	86.86	100.00
Mass Fraction (%):	13.14	86.86	100.00
Initial Sample			
Bulk Density (g/cm ³):	2.65	1.37	1.46
Calculated Porosity (% vol):	0.00	48.25	44.74
Volume of Solids (cm ³):	4.96	32.78	37.74
Volume of Voids (cm ³):	0.00	30.56	30.56
<i>Total Volume</i> (cm ³):	4.96	63.33	68.29
Volumetric Fraction (%):	7.26	92.74	100.00
Initial Moisture Content (% vol):	0.00	28.91	26.81
Sample at -1/3 Bar			
Bulk Density (g/cm ³):	2.65	1.35	1.44
Calculated Porosity (% vol):	0.00	49.17	49.17
Volume of Solids (cm ³):	4.96	32.78	37.74
Volume of Voids (cm ³):	0.00	31.71	31.71
<i>Total Volume</i> (cm ³):	4.96	64.49	69.44
Volumetric Fraction (%):	7.14	92.86	100.00
Moisture Content (% vol):	0.00	38.10	35.38
Sample at -15 Bar			
Bulk Density (g/cm ³):	2.65	1.35	1.44
Calculated Porosity (% vol):	0.00	49.17	49.17
Volume of Solids (cm ³):	4.96	32.78	37.74
Volume of Voids (cm ³):	0.00	31.71	31.71
<i>Total Volume</i> (cm ³):	4.96	64.49	69.44
Volumetric Fraction (%):	7.14	92.86	100.00
Moisture Content (% vol):	0.00	15.07	13.99
Ksat (cm/sec):	NA	2.6E-04	2.3E-04

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Borrow-1 (85%, 1.42) Project Name: VVL Composite Samples PO Number: 12015 Dry wt. of sample (g): 164.29

اء ما ... ما م

Tare wt., ring (g): 53.27

Tare wt., screen & clamp (g): 25.51

- Initial sample volume (cm³): 115.77
- *Initial dry bulk density* (g/cm³): 1.42
- Assumed particle density (g/cm³): 2.65

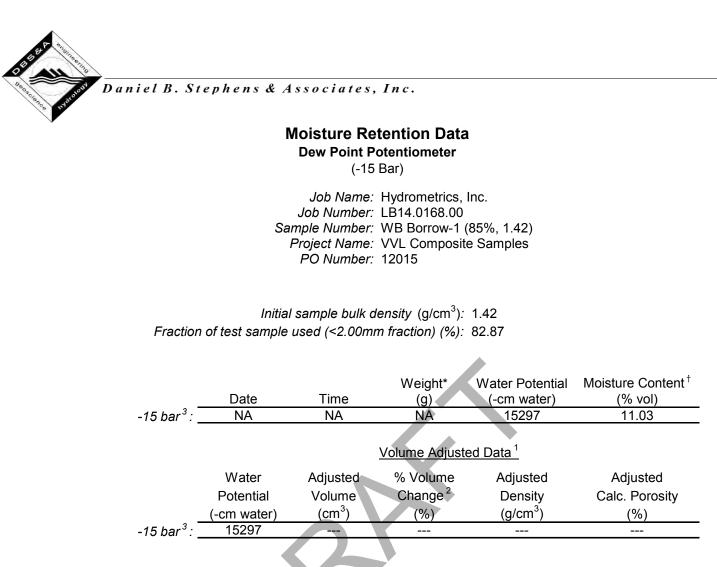
Initial calculated total porosity (%): 46.45

				Matric	Moisture
			Weight*	Potential	Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Pressure plate:	3-Oct-14	16:25	273.63	337	26.40

Volume Ad	justed	D

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Pressure plate:	337				

Moisture content at -1/3 bar (% cm ³ /cm ³):	26.4
Oversize corrected moisture content at -1/3 bar (% cm ³ /cm ³):	24.5


Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Moisture content at -15 bars	(% cm³/cm³): 11.0
------------------------------	------------	---------

Oversize corrected moisture content at -15 bars (% cm³/cm³): 10.3

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Borrow-1 (85%, 1.42)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): #4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	12.36	87.64	100.00
Mass Fraction (%):	12.36	87.64	100.00
Initial Sample			
Bulk Density (g/cm ³):	2.65	1.42	1.51
Calculated Porosity (% vol):	0.00	46.45	43.19
Volume of Solids (cm ³):	4.66	33.07	37.74
Volume of Voids (cm ³):	0.00	28.68	28.68
<i>Total Volume</i> (cm ³):	4.66	61.76	66.42
Volumetric Fraction (%):	7.02	92.98	100.00
Initial Moisture Content (% vol):	0.00	25.97	24.15
Sample at -1/3 Bar			
<i>Bulk Density</i> (g/cm ³):	2.65	1.42	1.51
Calculated Porosity (% vol):	0.00	46.45	46.45
Volume of Solids (cm ³):	4.66	33.07	37.74
Volume of Voids (cm ³):	0.00	28.68	28.68
Total Volume (cm ³):	4.66	61.76	66.42
Volumetric Fraction (%):	7.02	92.98	100.00
Moisture Content (% vol):	0.00	26.40	24.54
Sample at -15 Bar			
Bulk Density (g/cm ³):	2.65	1.42	1.51
Calculated Porosity (% vol):	0.00	46.45	46.45
Volume of Solids (cm ³):	4.66	33.07	37.74
Volume of Voids (cm ³):	0.00	28.68	28.68
<i>Total Volume</i> (cm ³):	4.66	61.76	66.42
Volumetric Fraction (%):	7.02	92.98	100.00
Moisture Content (% vol):	0.00	11.03	10.26
Ksat (cm/sec):	NA	5.0E-04	4.4E-04

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Stockpile-1 (85%, 1.52) Project Name: VVL Composite Samples PO Number: 12015 Dry wt. of sample (g): 181.10

.

Tare wt., ring (g): 55.22

Tare wt., screen & clamp (g): 27.82

- *Initial sample volume* (cm³): 119.42
- *Initial dry bulk density* (g/cm³): 1.52
- Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 42.77

				Matric	Moisture
			Weight*	Potential	Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
Pressure plate:	4-Oct-14	10:45	297.78	337	28.17

Volume Ad	justed	Da

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Pressure plate:	337				

Moisture content at -1/3 bar (% cm ³ /cm ³):	28.2
Oversize corrected moisture content at -1/3 bar (% cm ³ /cm ³):	26.7

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Stockpile-1 (85%, 1.52) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.52 Fraction of test sample used (<2.00mm fraction) (%): 88.43

Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
NA	NA	NA	15297	11.08
		Volume Adjuste	ed Data ¹	
Water	Adjusted	% Volume	Adjusted	Adjusted
Potential	Volume	Change ²	Density	Calc. Porosity
(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
15297				
	Moisture co	ontent at -15 ba	ars (% cm³/cm³):	11.1
	NA Water Potential (-cm water)	NANAWaterAdjustedPotentialVolume(-cm water)(cm³)15297	DateTime(g)NANANAVolume AdjustedVolumeWaterAdjusted% VolumePotentialVolumeChange²(-cm water)(cm³)(%)15297	Date Time (g) (-cm water) NA NA NA 15297 Volume Adjusted Data ¹ Water Adjusted % Volume Adjusted Potential Volume Change ² Density (-cm water) (cm ³) (%) (g/cm ³)

Oversize corrected moisture content at -15 bars (% cm³/cm³): 10.5

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-1 (85%, 1.52)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): #4

	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	8.73	91.27	100.00
Mass Fraction (%):	8.73	91.27	100.00
Initial Sample			
Bulk Density (g/cm ³):	2.65	1.52	1.58
Calculated Porosity (% vol):	0.00	42.77	40.55
Volume of Solids (cm ³):	3.30	34.44	37.74
Volume of Voids (cm ³):	0.00	25.74	25.74
<i>Total Volume</i> (cm ³):	3.30	60.18	63.48
Volumetric Fraction (%):	5.19	94.81	100.00
Initial Moisture Content (% vol):	0.00	22.40	21.24
Sample at -1/3 Bar			
<i>Bulk Density</i> (g/cm ³):	2.65	1.52	1.58
Calculated Porosity (% vol):	0.00	42.77	42.77
Volume of Solids (cm ³):	3.30	34.44	37.74
Volume of Voids (cm ³):	0.00	25.74	25.74
Total Volume (cm³):	3.30	60.18	63.48
Volumetric Fraction (%):	5.19	94.81	100.00
Moisture Content (% vol):	0.00	28.17	26.71
Sample at -15 Bar			
<i>Bulk Density</i> (g/cm ³):	2.65	1.52	1.58
Calculated Porosity (% vol):	0.00	42.77	42.77
Volume of Solids (cm ³):	3.30	34.44	37.74
Volume of Voids (cm ³):	0.00	25.74	25.74
<i>Total Volume</i> (cm ³):	3.30	60.18	63.48
Volumetric Fraction (%):	5.19	94.81	100.00
Moisture Content (% vol):	0.00	11.08	10.51
Ksat (cm/sec):	NA	4.1E-04	3.8E-04

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Moisture Retention Data

Pressure Plate

(-1/3 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Stockpile-2 (85%, 1.48) Project Name: VVL Composite Samples PO Number: 12015 Dry wt. of sample (g): 167.66

.

Tare wt., ring (g): 72.21

Tare wt., screen & clamp (g): 28.05

Initial sample volume (cm³): 113.33

Initial dry bulk density (g/cm³): 1.48

Assumed particle density (g/cm³): 2.65

Initial calculated total porosity (%): 44.17

				Matric	Moisture
			Weight*	Potential	Content [†]
_	Date	Time	(g)	(-cm water)	(% vol)
Pressure plate:	4-Oct-14	10:45	297.10	337	25.75

Volume Ad	justed	Da

					Adjusted
	Matric	Adjusted	% Volume	Adjusted	Calculated
	Potential	Volume	Change ²	Density	Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
Pressure plate:	337				
-					

Moisture content at -1/3 bar (% cm ³ /cm ³):	25.7
Oversize corrected moisture content at -1/3 bar (% cm³/cm³):	21.8

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

[†] Assumed density of water is 1.0 g/cm³

^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Dew Point Potentiometer

(-15 Bar)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Stockpile-2 (85%, 1.48) Project Name: VVL Composite Samples PO Number: 12015

Initial sample bulk density (g/cm³): 1.48 Fraction of test sample used (<2.00mm fraction) (%): 73.14

	Date	Time	Weight* (g)	Water Potential (-cm water)	Moisture Content [†] (% vol)
-15 bar ³ :	NA	NA	NA	15297	9.34
_					
			Volume Adjuste	d Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
_	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
-15 bar ³ :	15297				
		Moisture co	ontent at -15 ba	rs (% cm ³ /cm ³):	9.3

Oversize corrected moisture content at -15 bars (% cm³/cm³): 7.9

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 g/cm³.
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Oversize Correction Data Sheet

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-2 (85%, 1.48)
Project Name:	VVL Composite Samples
PO Number:	12015

Split (3/4", 3/8", #4): #4

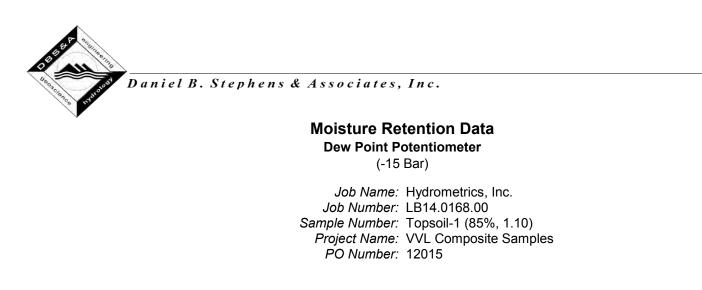
	Coarse Fraction*	Fines Fraction**	<u>Composite</u>
Subsample Mass (g):	24.42	75.58	100.00
Mass Fraction (%):	24.42	75.58	100.00
Initial Sample			
Bulk Density (g/cm ³):	2.65	1.48	1.66
Calculated Porosity (% vol):	0.00	44.17	37.42
Volume of Solids (cm ³):	9.21	28.52	37.74
Volume of Voids (cm ³):	0.00	22.57	22.57
<i>Total Volume</i> (cm ³):	9.21	51.09	60.30
Volumetric Fraction (%):	15.28	84.72	100.00
Initial Moisture Content (% vol):	0.00	24.52	20.77
Sample at -1/3 Bar			
<i>Bulk Density</i> (g/cm ³):	2.65	1.48	1.66
Calculated Porosity (% vol):	0.00	44.17	44.17
Volume of Solids (cm ³):	9.21	28.52	37.74
Volume of Voids (cm ³):	0.00	22.57	22.57
<i>Total Volume</i> (cm ³):	9.21	51.09	60.30
Volumetric Fraction (%):	15.28	84.72	100.00
Moisture Content (% vol):	0.00	25.75	21.81
Sample at -15 Bar			
<i>Bulk Density</i> (g/cm ³):	2.65	1.48	1.66
Calculated Porosity (% vol):	0.00	44.17	44.17
Volume of Solids (cm ³):	9.21	28.52	37.74
Volume of Voids (cm ³):	0.00	22.57	22.57
<i>Total Volume</i> (cm ³):	9.21	51.09	60.30
Volumetric Fraction (%):	15.28	84.72	100.00
Moisture Content (% vol):	0.00	9.34	7.91
Ksat (cm/sec):	NA	4.9E-04	3.7E-04

NA = Not analyzed

* = Porosity and moisture content of coarse fraction assumed to be zero, and coarse fraction bulk density assumed to be equal to particle density.

** = Volume adjusted, if applicable. See notes on Moisture Retention Data pages.

Daniel B. Sto	ephens & As	ssociates,	Inc.			
•	Mois	sture Reten Pressure P (-1/3 Bar	late			
Job Name: Hydrome Job Number: LB14.01 Sample Number: Topsoil- Project Name: VVL Cor PO Number: 12015	68.00 1 (85%, 1.10)	s	Ass	Tar Tare wt., scree	volume (cm ³): ensity (g/cm ³): ensity (g/cm ³):	133.75 27.21 224.14 1.10 2.65
Pressure plate:	Date 3-Oct-14	Time 16:25	Weight* (g) 481.65	Matric Potential (-cm water) 337	Moisture Content [†] (% vol) 32.86	-
Pressure plate:	Matric Potential (-cm water) 337	<u>Volu</u> Adjusted Volume (cm ³)	we Adjusted D % Volume Change ² (%)	Adjusted Density (g/cm ³)	Adjusted Calculated Porosity (%)	-
· -			ntent at -1/3 bai		32.9 NA	-


Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent volume change measurements obtained after the pressure plate testing. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.

* Weight including tares

- [†] Assumed density of water is 1.0 g/cm³
- ^{‡‡} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Technician Notes:

Initial sample bulk density (g/cm³): 1.10 Fraction of test sample used (<2.00mm fraction) (%): 96.44

			Weight*	Water Potential	Moisture Content [†]
	Date	Time	(g)	(-cm water)	(% vol)
-15 bar ³ :	NA	NA	NA	15297	11.00
_					
			Volume Adjuste	ed Data ¹	
	Water	Adjusted	% Volume	Adjusted	Adjusted
	Potential	Volume	Change ²	Density	Calc. Porosity
	(-cm water)	(cm ³)	(%)	(g/cm ³)	(%)
-15 bar ³ :	15297				
		Moisture co	ontent at -15 b	ars (% cm³/cm³):	11.0
				(
Ov	versize correcte	ed moisture co	ontent at -15 b	ars (% cm ³ /cm ³):	NA

Comments:

- ¹ Applicable if the sample experienced volume changes during testing. 'Volume Adjusted' values represent the volume change measurements obtained after the last hanging column or pressure plate point. "---" indicates no volume changes occurred.
- ² Represents percent volume change from original sample volume. A '+' denotes measured sample swelling, a '-' denotes measured sample settling, and '---' denotes no volume change occurred.
- ³ The moisture content of the sample at -15 bars of water potential was interpolated from the predicted water retention curve.

* Weight including tares

- [†] Adjusted for >2.00mm (#10 sieve) material not used in DPP/RH testing. Assumed moisture content of material >2.00mm is zero, and assumed density of water is 1.0 q/cm³.
- ^{##} Volume adjustments are applicable at this matric potential (see comment #1). Changes in volume, if applicable, are estimated based on obtainable measurements of changes in sample length and diameter.

Particle Size Analysis

Summary of Particle Size Characteristics

Sample Number	d ₁₀ (mm)	d ₅₀ (mm)	d ₆₀ (mm)	C _u	C _c	Method	ASTM Classification	USDA Classification	
VVL Composite 0-10	0.00024	1.6	4.4	1.8E+04	50	WS/H	Clayey gravel with sand (GC)s	Sandy Clay Loam	† (Est)
VVL Composite 11-15	0.0069	1.1	3.4	493	2.1	WS/H	Silty sand with gravel (SM)g	Sandy Loam †	
VVL Composite 16-20	2.8E-05	0.81	4.2	1.5E+05	103	WS/H	Clayey gravel with sand (GC)s	Sandy Clay Loam	† (Est)
VVL Composite 21-30	0.00020	0.89	4.8	2.4E+04	9.2	WS/H	Clayey gravel with sand (GC)s	Sandy Clay Loam	† (Est)
VVL Composite 31+	2.3E-10	0.021	0.058	2.5E+08	5877	WS/H	Sandy fat clay with gravel s(CH)g	Clay [†]	(Est)
VVL Composite TP-10	0.0082	0.64	1.5	183	2.3	WS/H	Clayey sand with gravel (SC)g	Sandy Loam †	
VVL Composite TP-12	1.2E-06	0.63	1.9	1.6E+06	2274	WS/H	Clayey gravel with sand (GC)s	Sandy Clay Loam	† (Est)
VVL Composite TP-13	0.00038	0.49	1.1	2895	4.4	WS/H	Clayey sand with gravel (SC)g	Sandy Clay Loam	† (Est)
WB Borrow-1	0.0013	0.095	0.22	169	3.1	WS/H	Clayey sand (SC)	Sandy Loam †	(Est)
WB Stockpile-1	0.00028	0.035	0.063	225	9.6	WS/H	Sandy lean clay s(CL)	Loam [†]	(Est)
WB Stockpile-2	0.0011	0.091	0.31	282	2.0	WS/H	Clayey sand with gravel (SC)g	Loam [†]	(Est)
Topsoil-1	0.0036	0.047	0.070	19	1.3	WS/H	Sandy silt s(ML)	Loam	

d₅₀ = Median particle diameter

 $C_u = \frac{d_{60}}{d_{10}}$

DS = Dry sieve H = Hydrometer [†] Greater than 10% of sample is coarse material

Est = Reported values for d₁₀, C_u, C_c, and soil classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

 $C_{c} = \frac{(d_{30})^{2}}{(d_{10})(d_{60})}$

WS = Wet sieve

OPERATOR OF T

Daniel B. Stephens & Associates, Inc.

Percent Gravel, Sand, Silt and Clay*										
Sample Number	% Gravel (>4.75mm)	% Sand (<4.75mm, >0.075mm)	% Silt (<0.075mm, >0.002mm)	% Clay (<0.002mm)						
VVL Composite 0-10	39.3	35.6	11.4	13.7						
VVL Composite 11-15	37.8	42.0	12.7	7.5						
VVL Composite 16-20	39.6	32.3	14.7	13.4						
VVL Composite 21-30	40.1	31.0	13.4	15.5						
VVL Composite 31+	18.2	21.4	27.6	32.8						
VVL Composite TP-10	34.1	44.3	15.1	6.5						
VVL Composite TP-12	36.4	33.5	13.8	16.3						
VVL Composite TP-13	28.9	37.8	15.6	17.6						
WB Borrow-1	12.4	40.3	35.7	11.6						
WB Stockpile-1	8.7	29.1	46.9	15.3						
WB Stockpile-2	24.4	27.1	35.3	13.1						
Topsoil-1	0.4	37.9	53.6	8.0						

*USCS classification does not classify clay fraction based on particle size. USDA definition of clay (<0.002mm) used in this table.

Particle Size Analysis Wet Sieve Data (#4 Split)

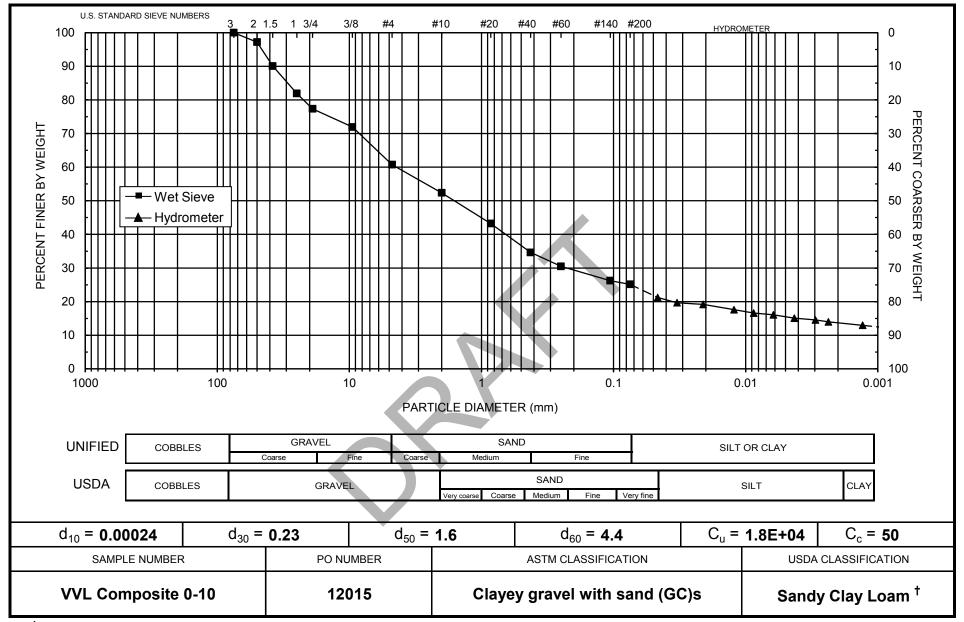
Job Numbe Sample Numbe	e: Hydrometrics er: LB14.0168.0 er: VVL Compos e: VVL Compos er: 12015	0 site 0-10		46048.20 27973.21 18074.99 58.78 96.76					
Test Dat	e: 3-Sep-14					Rounded Hard and dura	able		
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	_		
+4	3" 2" 1.5" 1" 3/4" 3/8" 4	75 50 38.1 25 19.0 9.5 4.75	0.00 1282.51 3282.85 3756.91 2110.31 2484.86 5157.55	0.00 1282.51 4565.36 8322.27 10432.58 12917.44 18074.99	46048.20 44765.69 41482.84 37725.93 35615.62 33130.76 27973.21	100.00 97.21 90.09 81.93 77.34 71.95 60.75			
-4	10 20 40 60 140 200 dry pan wet pan	2.00 0.85 0.425 0.250 0.106 0.075	(Based on calc 8.12 8.83 8.31 4.02 4.12 1.06 0.46	ulated sieve wt. 46.10 54.93 63.24 67.26 71.38 72.44 72.90 23.86) 50.66 41.83 33.52 29.50 25.38 24.32 23.86 0.00	52.36 43.23 34.64 30.49 26.23 25.13	_		
	$\begin{array}{cccc} d_{10} (\text{mm}): \ 0.00024 & d_{50} (\text{mm}): \ 1.6 \\ d_{16} (\text{mm}): \ 0.0060 & d_{60} (\text{mm}): \ 4.4 \\ d_{30} (\text{mm}): \ 0.23 & d_{84} (\text{mm}): \ 28 \end{array}$								
Median Particle Diameterd_{50} (mm):1.6Uniformity Coefficient, $Cu[d_{60}/d_{10}]$ (mm):1.8E+04Coefficient of Curvature, $Cc[(d_{30})^2/(d_{10}*d_{60})]$ (mm):50Mean Particle Diameter[(d_{16}+d_{50}+d_{84})/3] (mm):9.9Classification of fines:CH									
			Clayey gravel Sandy Clay Lo ry analysis by:	with sand (GC)s am [†] [†] Gre J. Fisher	3	of sample is coar	se material		
-4	4 10 20 40 60 140 200 dry pan wet pan wet pan <i>Coeffi</i> <i>Ma</i>	4.75 2.00 0.85 0.425 0.250 0.106 0.075 d_{10} (mm): d_{16} (mm): d_{30} (mm): Median Uniformity Contractor ficient of Curvatur ean Particle Dian oil Classification: bil Classification: Laborato	5157.55 (Based on calc 8,12 8.83 8.31 4.02 4.12 1.06 0.46 0.00024 0.0060 0.23 Particle Diame coefficient, Cu re, Cc[(d ₃₀) ² /((neter[(d ₁₆ +d ₅₀) ² /((classifi Clayey gravel - Sandy Clay Lo	18074.99 ulated sieve wt. 46.10 54.93 63.24 67.26 71.38 72.44 72.90 23.86 $d_{50} (mm):$ $d_{60} (mm):$ $d_{60} (mm):$ $d_{84} (mm):$ eterd_{50} (mm): $[d_{60}/d_{10}] (mm):$ $d_{10}*d_{60}] (mm):$ $d_{10}*d_{60} (mm):$ $d_{10}*d_{10} $	27973.21 50.66 41.83 33.52 29.50 25.38 24.32 23.86 0.00 1.6 4.4 28 1.6 1.8E+04 Since obtair 9.9 CH	60.75 52.36 43.23 34.64 30.49 26.23 25.13 Reported values oil classification a extrapolation wa the d ₁₀ diamete	are estimates s required to r		

Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 0-10
Project Name:	VVL Composite Samples
PO Number:	12015

Test Date: 27-Aug-14 Start Time: 9:54


. .

Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 58.78 Total Sample Wt. (g): 46048.20 Wt. Passing #4 (g): 27973.21

	Time	Temp	R	RL	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
27-Aug-14	1	21.5	26.5	6.0	20.5	12.0	0.04625	34.9	21.2
	2	21.5	25.0	6.0	19.0	12.2	0.03304	32.4	19.7
	5	21.5	24.5	6.0	18.5	12.3	0.02097	31.5	19.2
	15	21.5	23.0	6.0	17.0	12.5	0.01223	29.0	17.6
	30	21.6	22.0	6.0	16.1	12.7	0.00869	27.3	16.6
	60	21.6	21.5	6.0	15.6	12.8	0.00617	26.5	16.1
	126	21.7	20.5	5.9	14.6	12.9	0.00428	24.8	15.1
	264	21.7	20.0	5.9	14.1	13.0	0.00296	23.9	14.5
	421	21.5	19.5	6.0	13.5	13.1	0.00236	23.0	14.0
28-Aug-14	1404	21.4	18.5	6.0	12.5	13.3	0.00130	21.3	12.9

Comments:

* Dispersion device: mechanically operated stirring device

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

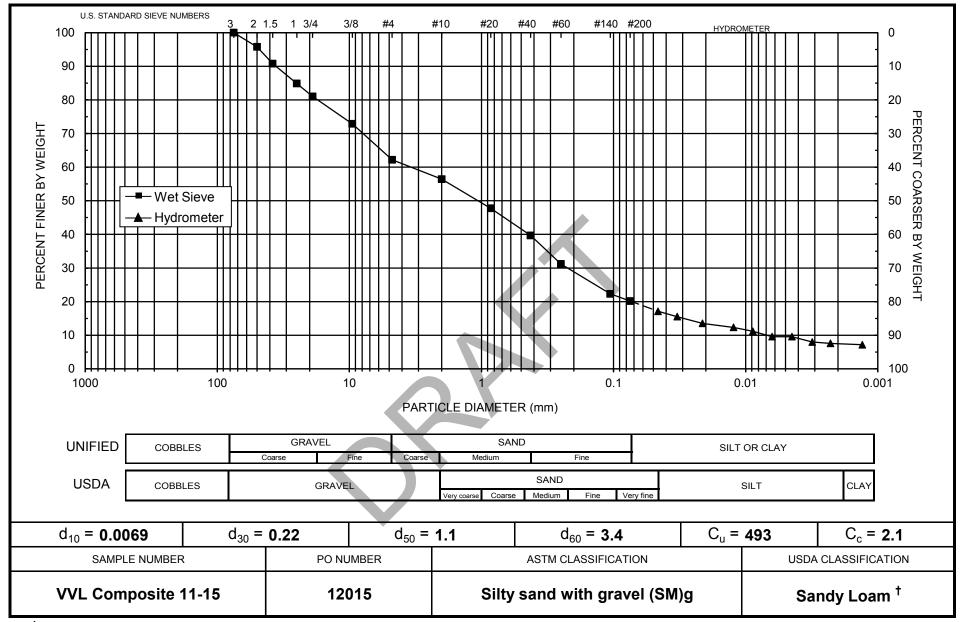
Particle Size Analysis Wet Sieve Data (#4 Split)

		VVL Composit 12015	e 11-15	Weig	Initial Dry Weight of Sample (g): 46786.10 Weight Passing #4 (g): 29099.72 Weight Retained #4 (g): 17686.38 Weight of Hydrometer Sample (g): 78.23 Calculated Weight of Sieve Sample (g): 125.78 Shape: Rounded Hardness: Hard and durable					
_	Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	_		
_	+4 -4	3" 2" 1.5" 1" 3/4" 3/8" 4	75 50 38.1 25 19.0 9.5 4.75	0.00 1977.56 2330.19 2770.31 1796.78 3816.83 4994.71 Based on calci	0.00 1977.56 4307.75 7078.06 8874.84 12691.67 17686.38 ulated sieve wt.)	46786.10 44808.54 42478.35 39708.04 37911.26 34094.43 29099.72	100.00 95.77 90.79 84.87 81.03 72.87 62.20			
		10 20 40 60 140 200 dry pan wet pan	2.00 0.85 0.425 0.250 0.106 0.075	7.24 10.95 10.15 10.66 11.19 2.68 0.57	54.79 65.74 75.89 86.55 97.74 100.42 100.99 24.79	70.99 60.04 49.89 39.23 28.04 25.36 24.79 0.00	56.44 47.74 39.67 31.19 22.29 20.16	_		
			d ₁₀ (mm): d ₁₆ (mm): d ₃₀ (mm): <i>Median</i>	0.036	d ₅₀ (mm): 1.1 d ₆₀ (mm): 3.4 d ₈₄ (mm): 23					
	Uniformity Coefficient, Cu [d ₆₀ /d ₁₀] (mm): 493 Coefficient of Curvature, Cc [(d ₃₀) ² /(d ₁₀ *d ₆₀)] (mm): 2.1 Mean Particle Diameter[(d ₁₆ +d ₅₀ +d ₈₄)/3] (mm): 8.0 Classification of fines: ML									

ASTM Soil Classification: Silty sand with gravel (SM)g USDA Soil Classification: Sandy Loam[†] [†] Greater than 10% of sample is coarse material

Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 11-15
Project Name:	VVL Composite Samples
PO Number:	12015
- (- (00 A 44


Test Date: 26-Aug-14 *Start Time:* 9:00

Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 78.23 Total Sample Wt. (g): 46786.10 Wt. Passing #4 (g): 29099.72

		-	_	-	-		-	_	
	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.4	27.5	6.0	21.5	11.8	0.04599	27.5	17.1
	2	21.4	25.5	6.0	19.5	12.1	0.03297	25.0	15.5
	5	21.4	23.0	6.0	17.0	12.5	0.02120	21.8	13.5
	15	21.4	21.5	6.0	15.5	12.8	0.01236	19.8	12.3
	30	21.5	20.0	6.0	14.0	13.0	0.00881	17.9	11.2
	60	21.5	18.0	6.0	12.0	13.3	0.00631	15.4	9.6
	120	21.5	18.0	6.0	12.0	13.3	0.00446	15.4	9.6
	250	21.4	16.0	6.0	10.0	13.7	0.00313	12.8	8.0
	476	21.4	15.5	6.0	9.5	13.8	0.00228	12.2	7.6
27-Aug-14	1454	21.4	15.0	6.0	9.0	13.8	0.00131	11.5	7.2

Comments:

* Dispersion device: mechanically operated stirring device

[†] Greater than 10% of sample is coarse material

÷₽

Daniel B. Stephens & Associates, Inc.

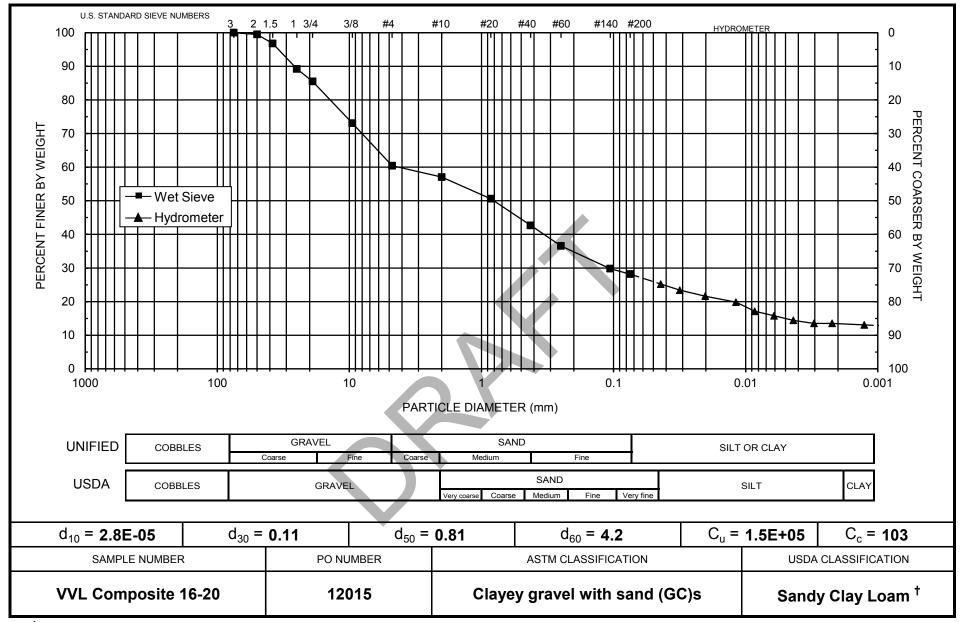
Particle Size Analysis Wet Sieve Data (#4 Split)

	VVL Composi	te 16-20		Initial Dry Weight of Sample (g): 46745.40 Weight Passing #4 (g): 28253.52 Weight Retained #4 (g): 18491.88 Weight of Hydrometer Sample (g): 67.19 Calculated Weight of Sieve Sample (g): 111.17					
Test Date:	3-Sep-14					Rounded Hard and dura	ble		
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	-		
+4	3" 2" 1.5" 1" 3/4" 3/8" 4	75 50 38.1 25 19.0 9.5 4.75	0.00 242.97 1258.91 3527.46 1739.24 5820.55 5902.75	0.00 242.97 1501.88 5029.34 6768.58 12589.13 18491.88	46745.40 46502.43 45243.52 41716.06 39976.82 34156.27 28253.52	100.00 99.48 96.79 89.24 85.52 73.07 60.44			
-4	10 20 40 60 140 200 dry pan wet pan	(2.00 0.85 0.425 0.250 0.106 0.075	Based on calco 3.78 7.15 8.83 6.78 7.51 1.82 0.45	ulated sieve wt.) 47.76 54.91 63.74 70.52 78.03 79.85 80.30 30.87) 63.41 56.26 47.43 40.65 33.14 31.32 30.87 0.00	57.04 50.61 42.67 36.57 29.81 28.17	-		
d_{10} (mm): 2.8E-05 d_{50} (mm): 0.81 d_{16} (mm): 0.0065 d_{60} (mm): 4.2 d_{30} (mm): 0.11 d_{84} (mm): 17									
Median Particle Diameterd_{50} (mm): 0.81Uniformity Coefficient, Cu[d_{60}/d_{10}] (mm): 1.5E+05Coefficient of Curvature, Cc[(d_{30})²/(d_{10}*d_{60})] (mm): 103Mean Particle Diameter[(d_{16}+d_{50}+d_{84})/3] (mm): 5.9									
Classification of fines: CH ASTM Soil Classification: Clayey gravel with sand (GC)s USDA Soil Classification: Sandy Clay Loam [†] [†] Greater than 10% of sample is coarse material Laboratory analysis by: J. Fisher Data entered by: C. Krous									

Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 16-20
Project Name:	VVL Composite Samples
PO Number:	12015


Test Date: 26-Aug-14 *Start Time:* 9:06

Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 67.19 Total Sample Wt. (g): 46745.40 Wt. Passing #4 (g): 28253.52

	Time	Temp	R	R_L	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.4	34.0	6.0	28.0	10.7	0.04386	41.7	25.2
	2	21.4	32.0	6.0	26.0	11.1	0.03149	38.7	23.4
	5	21.4	30.0	6.0	24.0	11.4	0.02021	35.7	21.6
	15	21.5	28.0	6.0	22.0	11.7	0.01183	32.8	19.8
	30	21.5	25.0	6.0	19.0	12.2	0.00853	28.3	17.1
	60	21.5	23.5	6.0	17.5	12.4	0.00609	26.1	15.8
	120	21.5	22.0	6.0	16.0	12.7	0.00435	23.9	14.4
	250	21.4	21.0	6.0	15.0	12.9	0.00304	22.4	13.5
	471	21.4	21.0	6.0	15.0	12.9	0.00221	22.4	13.5
27-Aug-14	1449	21.4	20.5	6.0	14.5	12.9	0.00127	21.6	13.1

Comments:

* Dispersion device: mechanically operated stirring device

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

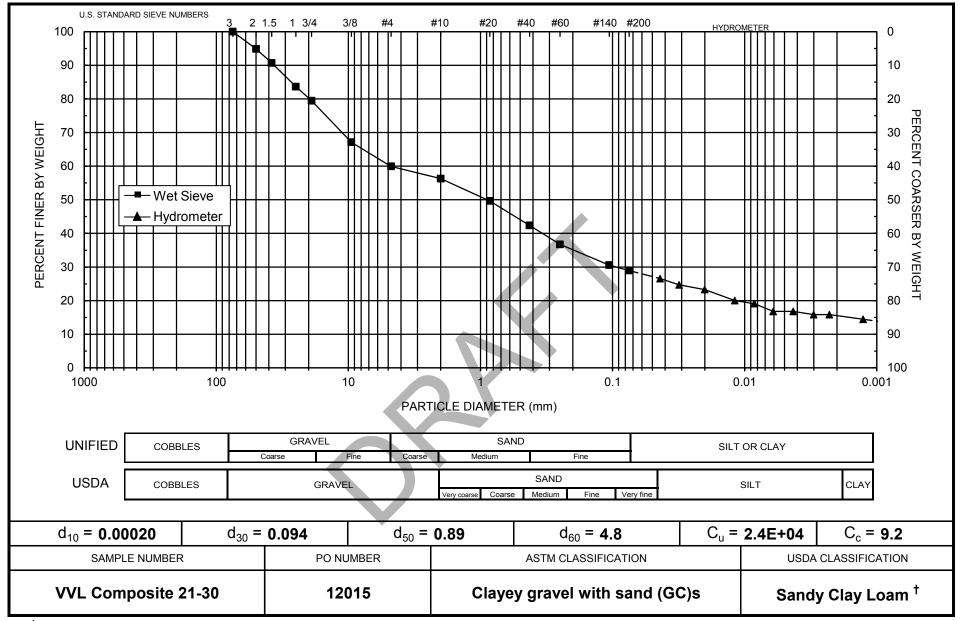
Particle Size Analysis Wet Sieve Data (#4 Split)

Job Name: Job Number: Sample Number: Project Name: PO Number:	te 21-30	Weig	Weight I Weight R ht of Hydrome	of Sample (g): Passing #4 (g): Petained #4 (g): ter Sample (g): ve Sample (g):	27411.98 18330.42 64.42				
Test Date:	3-Sep-14					Rounded Hard and dura	ble		
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing			
+4	3" 2" 1.5" 1" 3/4" 3/8" 4	75 50 38.1 25 19.0 9.5 4.75	0.00 2331.12 1923.92 3223.75 1907.88 5658.41 3285.34	0.00 2331.12 4255.04 7478.79 9386.67 15045.08 18330.42	45742.40 43411.28 41487.36 38263.61 36355.73 30697.32 27411.98	100.00 94.90 90.70 83.65 79.48 67.11 59.93			
-4	10 20 40 60 140 200 dry pan wet pan	2.00 0.85 0.425 0.250 0.106 0.075 d ₁₀ (mm):	3.92 7.13 7.82 6.06 6.64 1.74 0.36	ulated sieve wt. 47.00 54.13 61.95 68.01 74.65 76.39 76.75 30.75 d ₅₀ (mm):	60.50 53.37 45.55 39.49 32.85 31.11 30.75 0.00	56.28 49.65 42.37 36.74 30.56 28.94			
		d ₁₆ (mm): d ₃₀ (mm):	0.0032	d ₆₀ (mm): d ₈₄ (mm):	4.8				
Median Particle Diameterd_{50} (mm): 0.89Uniformity Coefficient, $Cu[d_{60}/d_{10}]$ (mm): 2.4E+04Coefficient of Curvature, $Cc[(d_{30})^2/(d_{10}*d_{60})]$ (mm): 9.2Mean Particle Diameter[(d_{16}+d_{50}+d_{84})/3] (mm): 9.0									
Classification of fines: CH ASTM Soil Classification: Clayey gravel with sand (GC)s USDA Soil Classification: Sandy Clay Loam [†] [†] Greater than 10% of sample is coarse material Laboratory analysis by: J. Fisher Data entered by: C. Krous									

Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 21-30
Project Name:	VVL Composite Samples
PO Number:	12015


Test Date: 26-Aug-14 *Start Time:* 9:54

Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 64.42 Total Sample Wt. (g): 45742.40 Wt. Passing #4 (g): 27411.98

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.5	34.5	6.0	28.5	10.6	0.04364	44.3	26.5
	2	21.5	32.5	6.0	26.5	11.0	0.03133	41.2	24.7
	5	21.5	31.0	6.0	25.0	11.2	0.02005	38.9	23.3
	15	21.4	27.5	6.0	21.5	11.8	0.01187	33.4	20.0
	30	21.4	26.5	6.0	20.5	12.0	0.00845	31.9	19.1
	60	21.5	24.0	6.0	18.0	12.4	0.00607	28.0	16.8
	120	21.5	24.0	6.0	18.0	12.4	0.00429	28.0	16.8
	250	21.4	23.0	6.0	17.0	12.5	0.00300	26.4	15.8
	431	21.4	23.0	6.0	17.0	12.5	0.00228	26.4	15.8
27-Aug-14	1423	21.4	21.5	6.0	15.5	12.8	0.00127	24.1	14.4

Comments:

* Dispersion device: mechanically operated stirring device

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#4 Split)

Job Name: Job Number: Sample Number: Project Name: PO Number:	Initial Dry Weight of Sample (g): 38759.70 Weight Passing #4 (g): 31712.72 Weight Retained #4 (g): 7046.98 Weight of Hydrometer Sample (g): 51.03 Calculated Weight of Sieve Sample (g): 62.37									
Test Date:	3-Sep-14					Rounded Hard and dura	ble			
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing				
+4	3" 2" 1.5" 1" 3/4" 3/8" 4	75 50 38.1 25 19.0 9.5 4.75	0.00 741.04 1188.51 1814.33 915.68 1605.74 781.68	0.00 741.04 1929.55 3743.88 4659.56 6265.30 7046.98	38759.70 38018.66 36830.15 35015.82 34100.14 32494.40 31712.72	100.00 98.09 95.02 90.34 87.98 83.84 81.82				
-4	10 20 40 60 140 200 dry pan wet pan	2.00 0.85 0.425 0.250 0.106 0.075 d ₁₀ (mm):	Based on calcu 2.10 2.07 2.01 2.00 3.54 1.61 0.29 2.3E-10	ulated sieve wt. 13.44 15.51 17.52 19.52 23.06 24.67 24.96 37.41 d ₅₀ (mm):	48.93 46.86 44.85 42.85 39.31 37.70 37.41 0.00	78.45 75.13 71.91 68.70 63.03 60.45				
		d ₁₆ (mm): d ₃₀ (mm):		d ₆₀ (mm): d ₈₄ (mm):						
Median Particle Diameterd_{50} (mm): 0.021Uniformity Coefficient, $Cu[d_{60}/d_{10}]$ (mm): 2.5E+08Coefficient of Curvature, $Cc[(d_{30})^2/(d_{10}*d_{60})]$ (mm): 5877Mean Particle Diameter[(d_{16}+d_{50}+d_{84})/3] (mm): 3.3										
	Classification of fines: CH									
ASTM Soil Classification: Sandy fat clay with gravel s(CH)g USDA Soil Classification: Clay [†] [†] Greater than 10% of sample is coarse material										
Laboratory analysis by: J. Fisher Data entered by: C. Krous Checked by: J. Hines										

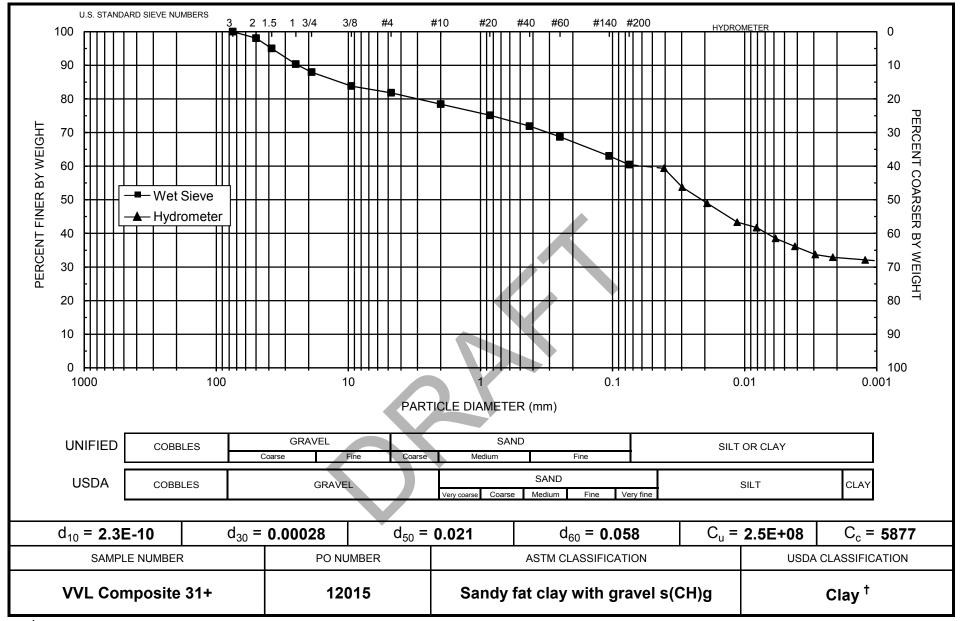
Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 31+
Project Name:	VVL Composite Samples
PO Number:	12015
Test Date:	26 Aug 14

. .

....

Test Date: 26-Aug-14 Start Time: 9:12


. .

Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 51.03 Total Sample Wt. (g): 38759.70 Wt. Passing #4 (g): 31712.72

	T :	T	D	Р	Р		5	-	
	Time	Temp	R	R_{L}	R _{corr}		D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.4	43.0	6.0	37.0	9.3	0.04073	72.5	59.4
	2	21.4	39.5	6.0	33.5	9.8	0.02968	65.7	53.7
	5	21.5	36.5	6.0	30.5	10.3	0.01923	59.8	49.0
	15	21.5	33.0	6.0	27.0	10.9	0.01140	53.0	43.3
	30	21.5	32.0	6.0	26.0	11.1	0.00812	51.0	41.7
	60	21.4	30.0	6.0	24.0	11.4	0.00583	47.1	38.5
	120	21.5	28.5	6.0	22.5	11.6	0.00416	44.2	36.1
	250	21.4	27.0	6.0	21.0	11.9	0.00292	41.2	33.7
	466	21.4	26.5	6.0	20.5	12.0	0.00215	40.2	32.9
27-Aug-14	1444	21.4	26.0	6.0	20.0	12.0	0.00122	39.2	32.1

Comments:

* Dispersion device: mechanically operated stirring device

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Daniel B. Stephens & Associates, Inc.

Particle Size Analysis Wet Sieve Data (#4 Split)

Job Name: Job Number: Sample Number: Project Name: PO Number: Test Date:	Initial Dry Weight of Sample (g): 49431.50 Weight Passing #4 (g): 32599.59 Weight Retained #4 (g): 16831.91 Weight of Hydrometer Sample (g): 50.78 Calculated Weight of Sieve Sample (g): 77.00 Shape: Rounded Hardness: Hard and durable								
Test	Sieve	Diameter	Wt.	Cum Wt.	Wt.				
Fraction	Number	(mm)	Retained	Retained	Passing	% Passing			
	Hambol	(1111)	rtotairiou	rtotainou	raconig	/or acong	-		
+4	3"	75	0.00	0.00	49431.50	100.00			
	3 2"	75 50	2970.88	2970.88	49431.50 46460.62	93.99			
	1.5"	38.1	2128.74	5099.62	44331.88	89.68			
	1.0	25	3658.05	8757.67	40673.83	82.28			
	3/4"	19.0	1911.54	10669.21	38762.29	78.42			
	3/8"	9.5	2319.17	12988.38	36443.12	73.72			
	4	4.75	3843.53	16831.91	32599.59	65.95			
-4	40			ulated sieve wt.)					
	10 20	2.00	2.24 6.36	28.46	48.54 42.18	63.04 54.78			
	20 40	0.85 0.425	6.30 8.93	34.82 43.75	42.18 33.25	54.78 43.18			
	40 60	0.425	6.58	50.33	26.67	34.64			
	140	0.250	7.92	58.25	18.75	24.35			
	200	0.100	2.10	60.35	16.65	21.62			
	dry pan	0.010	0.74	61.09	15.91	21.02			
	wet pan			15.91	0.00				
	•						-		
		d ₁₀ (mm):	d ₅₀ (mm): 0.64						
		d ₁₆ (mm):	0.036	d ₆₀ (mm):					
	d ₃₀ (mm): 0.17			d ₈₄ (mm): 2					
		50 (· · · ·	0-1 ()- 1	-					
<i>Median Particle Diameter</i> d ₅₀ (mm): 0.64									
Uniformity Coefficient, Cu[d ₆₀ /d ₁₀] (mm): 183									
	Coeffic	ient of Curvatur	e, Cc[(d ₃₀) ² /(d	d ₁₀ *d ₆₀)] (mm) <i>:</i> ;	2.3				
				+d ₈₄)/3] (mm) <i>:</i>					
			L(a 16 - a 50	- ₀₄ , •] ().					

Classification of fines: CL

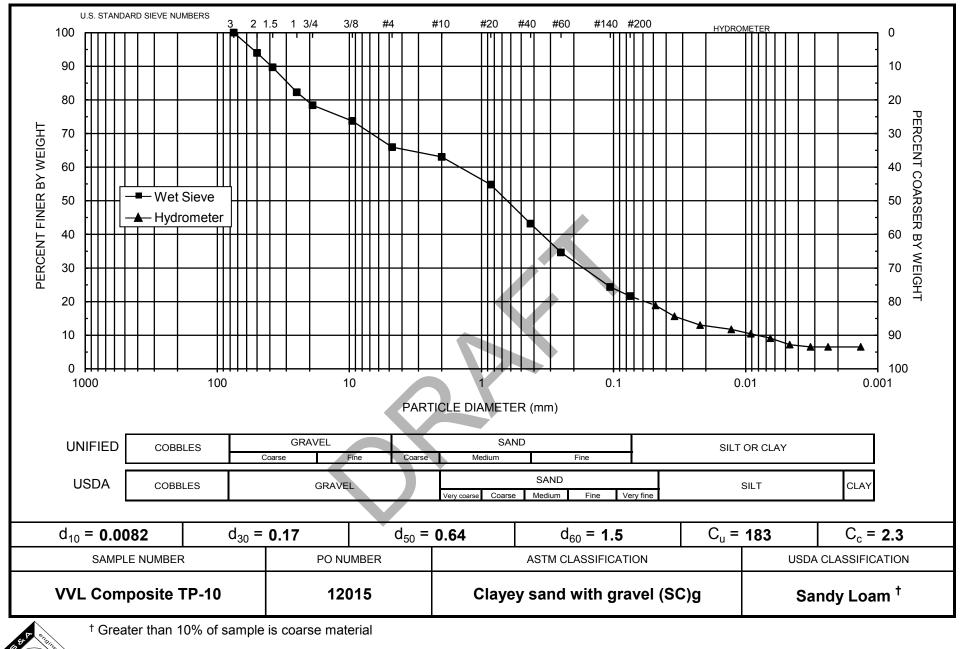
ASTM Soil Classification: Clayey sand with gravel (SC)g USDA Soil Classification: Sandy Loam[†] [†] Greater than 10% of sample is coarse material

> Laboratory analysis by: J. Fisher Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-10
Project Name:	VVL Composite Samples
PO Number:	12015

Test Date: 26-Aug-14 *Start Time:* 9:18


Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 50.78 Total Sample Wt. (g): 49431.50 Wt. Passing #4 (g): 32599.59

	Time	Taman	•	Р	Р		D	Б	
	Time	Temp	R	R_{L}	R _{corr}		D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.5	20.5	6.0	14.5	12.9	0.04815	28.6	18.9
	2	21.5	18.0	6.0	12.0	13.3	0.03458	23.7	15.6
	5	21.5	16.0	6.0	10.0	13.7	0.02214	19.8	13.0
	15	21.5	15.0	6.0	9.0	13.8	0.01285	17.8	11.7
	30	21.5	14.0	6.0	8.0	14.0	0.00914	15.8	10.4
	60	21.4	13.0	6.0	7.0	14.2	0.00651	13.8	9.1
	120	21.5	11.5	6.0	5.5	14.4	0.00464	10.9	7.2
	250	21.4	11.0	6.0	5.0	14.5	0.00323	9.9	6.5
	461	21.4	11.0	6.0	5.0	14.5	0.00237	9.9	6.5
27-Aug-14	1439	21.4	11.0	6.0	5.0	14.5	0.00134	9.9	6.5

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: S. Hanhardt Data entered by: C. Krous Checked by: J. Hines

[†] Greater than 10% of sample is coarse material

Particle Size Analysis Wet Sieve Data (#4 Split)

Job Name: Job Number: Sample Number: Project Name: PO Number:	te TP-12	Initial Dry Weight of Sample (g): 50102.30 Weight Passing #4 (g): 31847.26 Weight Retained #4 (g): 18255.04 Weight of Hydrometer Sample (g): 66.12 Calculated Weight of Sieve Sample (g): 104.02					
Test Date:	3-Sep-14					Rounded Hard and dura	ble
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	
+4	3" 2" 1.5" 1" 3/4" 3/8" 4	75 50 38.1 25 19.0 9.5 4.75	0.00 464.09 2822.07 4675.36 1865.31 4844.84 3583.37	0.00 464.09 3286.16 7961.52 9826.83 14671.67 18255.04	50102.30 49638.21 46816.14 42140.78 40275.47 35430.63 31847.26	100.00 99.07 93.44 84.11 80.39 70.72 63.56	
-4	10 20 40 60 140 200 dry pan wet pan	2.00 0.85 0.425 0.250 0.106 0.075	(Based on calco 3.47 7.07 8.35 7.18 6.94 1.82 0.30	ulated sieve wt. 41.37 48.44 56.79 63.97 70.91 72.73 73.03 30.99) 62.65 55.58 47.23 40.05 33.11 31.29 30.99 0.00	60.23 53.43 45.40 38.50 31.83 30.08	
		d ₁₀ (mm): d ₁₆ (mm): d ₃₀ (mm):	0.0014	d ₅₀ (mm): d ₆₀ (mm): d ₈₄ (mm):	1.9		
			oefficient, Cu e, Cc[(d ₃₀) ² /(d	d ₁₀ *d ₆₀)] (mm) <i>:</i>	1.6E+06 and so 2274 obtain	Reported values oil classification a extrapolation was the d ₁₀ diameter	re estimates, required to
			Clayey gravel	am [†] [†] Gre	3	of sample is coars	e material

Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

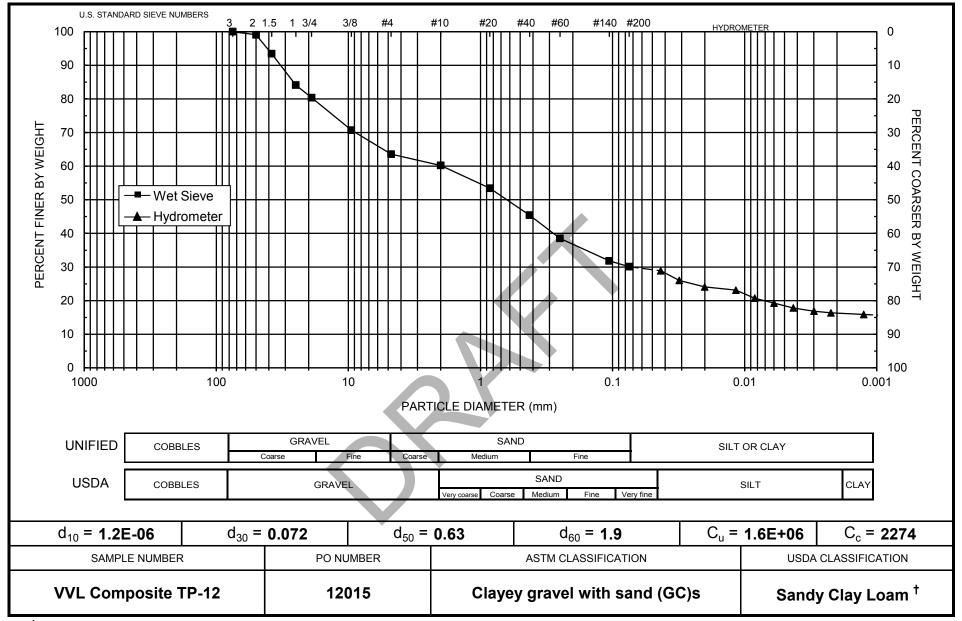
Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-12
Project Name:	VVL Composite Samples
PO Number:	12015

. .

. .

Test Date: 26-Aug-14 *Start Time:* 9:24

. .


Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 66.12 Total Sample Wt. (g): 50102.30 Wt. Passing #4 (g): 31847.26

	Time	Temp	R	R_L	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.5	36.0	6.0	30.0	10.4	0.04314	45.4	28.9
	2	21.5	33.0	6.0	27.0	10.9	0.03121	40.9	26.0
	5	21.5	31.0	6.0	25.0	11.2	0.02004	37.9	24.1
	15	21.5	30.0	6.0	24.0	11.4	0.01165	36.3	23.1
	30	21.5	27.5	6.0	21.5	11.8	0.00839	32.6	20.7
	60	21.4	26.0	6.0	20.0	12.0	0.00600	30.3	19.2
	120	21.5	24.5	6.0	18.5	12.3	0.00428	28.0	17.8
	250	21.5	23.5	6.0	17.5	12.4	0.00298	26.5	16.8
	456	21.4	23.0	6.0	17.0	12.5	0.00222	25.7	16.4
27-Aug-14	1435	21.4	22.5	6.0	16.5	12.6	0.00126	25.0	15.9

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: S. Hanhardt Data entered by: C. Krous Checked by: J. Hines

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Particle Size Analysis Wet Sieve Data (#4 Split)

Job Number: Sample Number:	VVL Composit 12015	e TP-13	Weig	Initial Dry Weight of Sample (g): 40176.50 Weight Passing #4 (g): 28546.92 Weight Retained #4 (g): 11629.58 Weight of Hydrometer Sample (g): 54.65 Calculated Weight of Sieve Sample (g): 76.91 Shape: Rounded				
					Hardness:	Hard and dura	ble	
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing		
+4								
	3"	75	0.00	0.00	40176.50	100.00		
	2"	50	808.64	808.64	39367.86	97.99		
	1.5"	38.1	1303.26	2111.90	38064.60	94.74		
	1"	25	2175.67	4287.57	35888.93	89.33		
	3/4"	19.0	990.64	5278.21	34898.29	86.86		
	3/8" 4	9.5 4.75	3730.51 2620.86	9008.72 11629.58	31167.78 28546.92	77.58 71.05		
	4	4.75	2020.00	11029.56	20040.92	71.05		
-4		(Based on calc	ulated sieve wt.)			
	10	2.00	3,98	26.24	, 50.67	65.88		
	20	0.85	6.39	32.63	44.28	57.57		
	40	0.425	7.26	39.89	37.02	48.13		
	60	0.250	5.03	44.92	31.99	41.59		
	140	0.106	5.13	50.05	26.86	34.92		
	200	0.075	1.29	51.34	25.57	33.25		
	dry pan		0.34	51.68	25.23			
	wet pan		*	25.23	0.00			
		d ₁₀ (mm):	0.00038	d ₅₀ (mm):	0.49			
		d ₁₆ (mm):	0.0014	d ₆₀ (mm):	1.1			
		d ₃₀ (mm):		d ₈₄ (mm):				
		u ₃₀ (mm).	0.043	u ₈₄ (mm).	15			
		Median	Particle Diama	e <i>ter</i> d ₅₀ (mm):	0.40			
						Reported values		
		-		[d ₆₀ /d ₁₀] (mm) <i>:</i>	Leinco	oil classification a extrapolation was		
	Coeffic	ient of Curvatur	e, Cc[(d ₃₀) ² /(d ₁₀ *d ₆₀)] (mm) <i>:</i>		n the d_{10} diameter		
	Меа	an Particle Dian	<i>neter</i> [(d ₁₆ +d ₅₀	0+d ₈₄)/3] (mm) <i>:</i>		10		

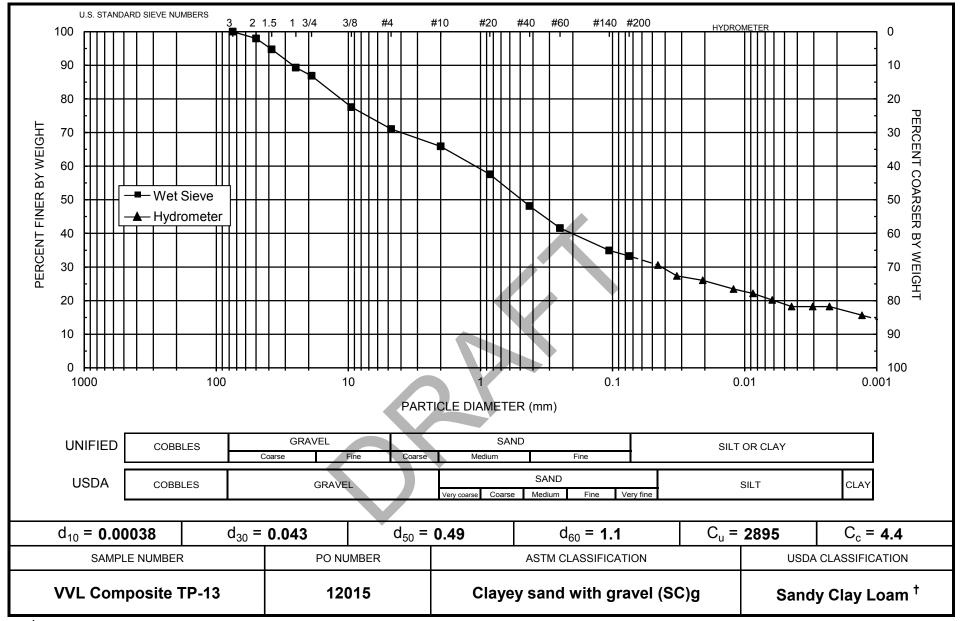
Classification of fines: CH

ASTM Soil Classification: Clayey sand with gravel (SC)g USDA Soil Classification: Sandy Clay Loam[†] [†] Greater than 10% of sample is coarse material

> Laboratory analysis by: J. Fisher Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite TP-13
Project Name:	VVL Composite Samples
PO Number:	12015


Test Date: 26-Aug-14 Start Time: 9:30 Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 54.65 Total Sample Wt. (g): 40176.50 Wt. Passing #4 (g): 28546.92

	Time	Temp	R	R_L	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.5	29.5	6.0	23.5	11.5	0.04529	43.1	30.6
	2	21.5	27.0	6.0	21.0	11.9	0.03259	38.5	27.3
	5	21.5	26.0	6.0	20.0	12.0	0.02076	36.7	26.0
	15	21.5	24.0	6.0	18.0	12.4	0.01215	33.0	23.4
	30	21.5	23.0	6.0	17.0	12.5	0.00865	31.2	22.1
	60	21.4	21.5	6.0	15.5	12.8	0.00618	28.4	20.2
	120	21.5	20.0	6.0	14.0	13.0	0.00441	25.7	18.2
	250	21.5	20.0	6.0	14.0	13.0	0.00305	25.7	18.2
	451	21.4	20.0	6.0	14.0	13.0	0.00228	25.7	18.2
27-Aug-14	1430	21.4	18.0	6.0	12.0	13.3	0.00129	22.0	15.6

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: S. Hanhardt Data entered by: C. Krous Checked by: J. Hines

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Particle Size Analysis Wet Sieve Data (#4 Split)

	VVL Composit		Weig	Initial Dry Weight of Sample (g): 2 Weight Passing #4 (g): 2 Weight Retained #4 (g): 2 Weight of Hydrometer Sample (g): 6 Calculated Weight of Sieve Sample (g): 6			
Test Date:	3-Sep-14				e: Angular s: Hard and dura	ble	
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	
+4 -4	3" 2" 1.5" 1" 3/4" 3/8" 4 10 20 40 60 140 200 dry pan wet pan	75 50 38.1 25 19.0 9.5 4.75	0.00 0.00 83.67 782.19 227.82 748.95 755.17	0.00 0.00 83.67 865.86 1093.68 1842.63 2597.80 ulated sieve wt.) 11.81 15.99 21.34 26.68 33.59 36.28 36.78 32.14	21015.60 21015.60 20931.93 20149.74 19921.92 19172.97 18417.80	100.00 100.00 99.60 95.88 94.80 91.23 87.64 82.87 76.80 69.04 61.29 51.26 47.36	- -
	Coeffici	Uniformity C ient of Curvatur	0.0044 0.030 <i>Particle Diame</i> <i>oefficient, Cu</i> <i>re, Cc</i> $[(d_{16}+d_{50})^2]$	$d_{50} (mm):$ $d_{60} (mm):$ $d_{84} (mm):$ $d_{10} d_{10} (mm):$ $d_{10} d_{60} d_{10} (mm):$ $d_{10} d_{60} (mm):$ $d_{10} d_{60} (mm):$ $d_{10} d_{60} (mm):$	0.095 0.22 2.5 0.095 Note 169 and 3.1 obta 0.87	e: Reported values soil classification a e extrapolation wa ain the d ₁₀ diameter	are estimates, s required to
	ASTM Soil	Classification:	Clayey sand (S	SC)			

ASTM Soil Classification: Clayey sand (SC) USDA Soil Classification: Sandy Loam[†]

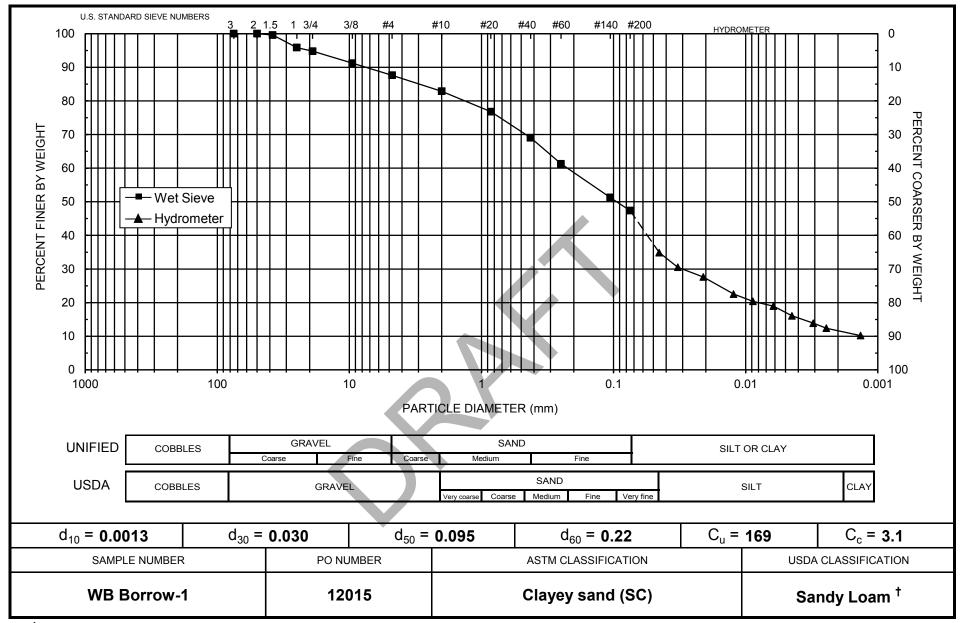
> Laboratory analysis by: J. Fisher Data entered by: C. Krous Checked by: J. Hines

[†] Greater than 10% of sample is coarse material

Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Borrow-1
Project Name:	VVL Composite Samples
PO Number:	12015
Test Date:	27-Aug-14

Start Time: 10:00


Type of Water Used: DISTILLED *Reaction with* H₂O₂: NA *Dispersant*:* (NaPO₃)₆ *Assumed particle density:* 2.65 *Initial Wt.* (g): 60.40 *Total Sample Wt.* (g): 21015.60 *Wt. Passing #4 (g):* 18417.80

	Time	Temp	R	R_L	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
27-Aug-14	1	21.5	30.0	6.0	24.0	11.4	0.04513	39.8	34.9
	2	21.5	27.0	6.0	21.0	11.9	0.03259	34.8	30.5
	5	21.5	25.0	6.0	19.0	12.2	0.02090	31.5	27.6
	15	21.6	21.5	6.0	15.5	12.8	0.01234	25.7	22.5
	30	21.6	20.0	6.0	14.1	13.0	0.00880	23.3	20.4
	62	21.6	19.0	6.0	13.1	13.2	0.00616	21.6	18.9
	121	21.7	17.0	5.9	11.1	13.5	0.00446	18.3	16.1
	259	21.7	15.5	5.9	9.6	13.8	0.00308	15.8	13.9
	416	21.5	14.5	6.0	8.5	13.9	0.00245	14.1	12.4
28-Aug-14	1399	21.4	13.0	6.0	7.0	14.2	0.00135	11.6	10.2

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: C. Krous Data entered by: C. Krous Checked by: J. Hines

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Particle Size Analysis Wet Sieve Data (#4 Split)

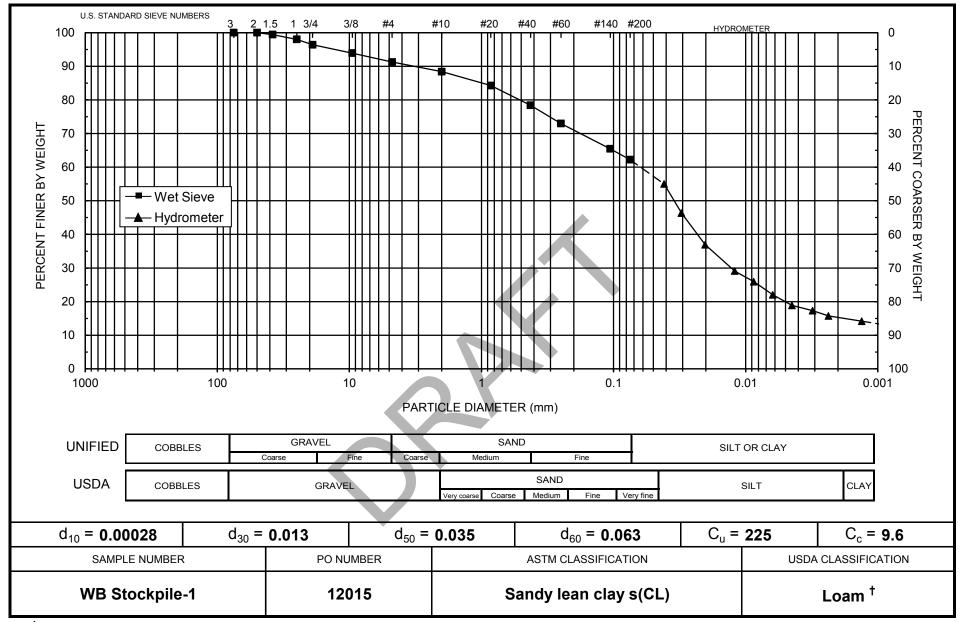
Job Name: Job Number: Sample Number: Project Name: PO Number:		19965.00 18221.55 1743.45 58.16 63.72					
Test Date:	3-Sep-14					Angular Hard and dura	ble
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	
+4							
	3"	75	0.00	0.00	19965.00	100.00	
	2"	50	0.00	0.00	19965.00	100.00	
	1.5"	38.1	110.93	110.93	19854.07	99.44	
	1"	25	287.18	398.11	19566.89	98.01	
	3/4"	19.0	318.60	716.71	19248.29	96.41	
	3/8"	9.5	495.43	1212.14	18752.86	93.93	
	4	4.75	531.31	1743.45	18221.55	91.27	
-4			(Record on color	ulated alove wt	N N		
-4	10	2.00	Based on calcu 1.81	7.37	, 56.35	88.43	
	20	0.85	2.64	10.01	53.71	84.28	
	40	0.425	3.75	13.76	49.96	78.40	
	60	0.250	3.45	17.21	46.51	72.99	
	140	0.106	4.80	22.01	41.71	65.45	
	200	0.075	2.07	24.08	39.64	62.20	
	dry pan	0.075	0.68	24.76	38.96	02.20	
	wet pan		0.00	38.96	0.00		
	wetpun			00.00	0.00		
			0.00000	d (mama);	0.005		
		d ₁₀ (mm):		d ₅₀ (mm):			
		d ₁₆ (mm):	0.0025	d ₆₀ (mm):	0.063		
		d ₃₀ (mm):	0.013	d ₈₄ (mm):	0.82		
			Particle Diame	,	11010.	Reported values	
		Uniformity C	oefficient, Cu[d ₆₀ /d ₁₀] (mm) <i>:</i>	225 and s	oil classification a	re estimates,
	Coeffici	ent of Curvatur	<i>e, Cc</i> [(d ₃₀) ² /(c	l ₁₀ *d ₆₀)] (mm) <i>:</i>	0.0	extrapolation was	
			<i>neter</i> [(d ₁₆ +d ₅₀		lopian	n the d ₁₀ diameter	
	Wea		L(0 ₁₆ .0 ₅₀	• • • • • • • • • • • • • • • • • • •	0.20		
			Classific	cation of fines:	CL		
	ASTM Soil	Classification.	Sandy lean cla	v s(CL)			
		Classification:			ater than 10% o	of sample is coars	e material
	000/100/	2.400041.011.					

Laboratory analysis by: J. Fisher Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-1
Project Name:	VVL Composite Samples
PO Number:	12015
Test Date:	26-Aug-14

Start Time: 9:42


Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 58.16 Total Sample Wt. (g): 19965.00 Wt. Passing #4 (g): 18221.55

	Time	Temp	R	R_L	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.5	41.0	6.0	35.0	9.6	0.04140	60.2	55.0
	2	21.5	35.5	6.0	29.5	10.5	0.03062	50.8	46.3
	5	21.5	29.5	6.0	23.5	11.5	0.02026	40.5	36.9
	15	21.5	24.5	6.0	18.5	12.3	0.01211	31.9	29.1
	30	21.4	22.5	6.0	16.5	12.6	0.00868	28.4	25.9
	60	21.5	20.0	6.0	14.0	13.0	0.00623	24.1	22.0
	120	21.5	18.0	6.0	12.0	13.3	0.00446	20.7	18.9
	250	21.4	17.0	6.0	11.0	13.5	0.00311	18.9	17.3
	441	21.4	16.0	6.0	10.0	13.7	0.00236	17.2	15.7
27-Aug-14	1422	21.4	15.0	6.0	9.0	13.8	0.00132	15.5	14.2

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: S. Hanhardt Data entered by: C. Krous Checked by: J. Hines

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

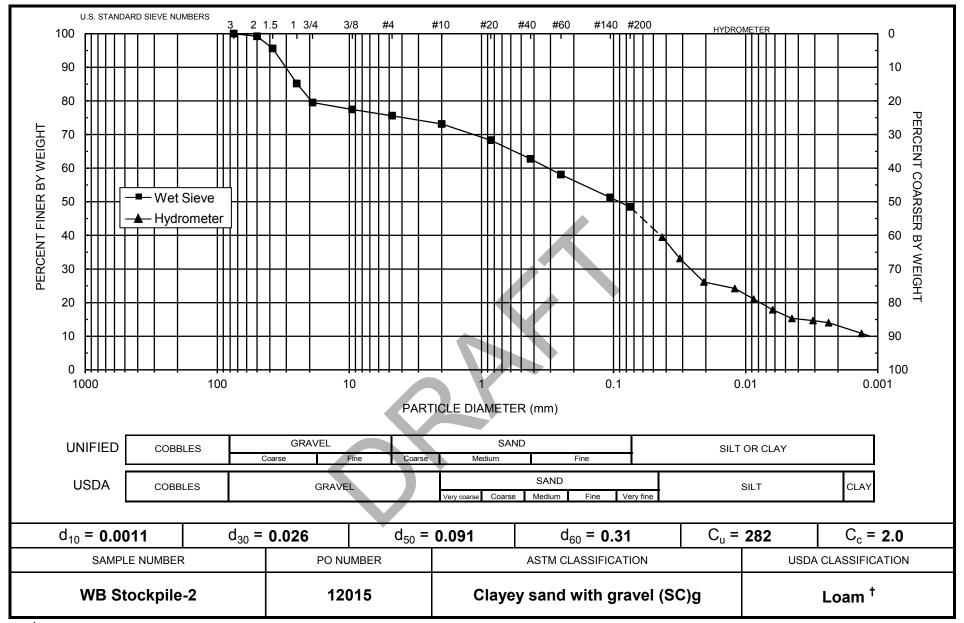
Particle Size Analysis Wet Sieve Data (#4 Split)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Stockpile-2 Project Name: VVL Composite Samples PO Number: 12015				Weig	Initial Dry Weight of Sample (g): Weight Passing #4 (g): Weight Retained #4 (g): Weight of Hydrometer Sample (g): Calculated Weight of Sieve Sample (g):			
Test Date:	3-Sep-14					Angular Hard and dura	ble	
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	_	
+4	3"	75	0.00	0.00	23971.00	100.00	•	
	2" 1.5"	50 38.1	187.62 867.05	187.62 1054.67	23783.38 22916.33	99.22 95.60		
	1" 3/4"	25 19.0	2498.89 1357.89	3553.56 4911.45	20417.44 19059.55	85.18 79.51		
	3/4" 3/8" 4	9.5 4.75	493.55 448.36	5405.00 5853.36	18566.00 18117.64	77.45 75.58		
-4				ulated sieve wt.				
	10 20	2.00 0.85	1.92 3.79	21.11 24.90	57.48 53.69	73.14 68.32		
	40 60	0.425 0.250	4.39 3.65	29.29 32.94	49.30 45.65	62.73 58.09		
	140 200	0.106 0.075	5.36 2.21	38.30 40.51	40.29 38.08	51.27 48.45		
	dry pan wet pan	$\langle \rangle$	0.65	41.16 37.43	37.43 0.00			
		d ₁₀ (mm):	0.0011	d ₅₀ (mm):	0.091			
		d ₁₆ (mm):		d ₆₀ (mm):				
		d ₃₀ (mm):		d ₈₄ (mm):				
		Uniformity C	oefficient, Cu	<i>ter</i> d ₅₀ (mm) <i>:</i> [d ₆₀ /d ₁₀] (mm) <i>:</i>	282 and s	Reported values oil classification a extrapolation was	are estimates,	
				d ₁₀ *d ₆₀)] (mm) <i>:</i> +d ₈₄)/3] (mm) <i>:</i>	2.0 obtair	the d ₁₀ diameter		
				cation of fines:				
	ASTM Soil	Classification.		ith gravel (SC)g				
		Classification:				of sample is coars	se material	
		Laborato	ry analysis by:	J. Fisher				

Laboratory analysis by: J. Fisher Data entered by: C. Krous Checked by: J. Hines

Particle Size Analysis Hydrometer Data

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-2
Project Name:	VVL Composite Samples
PO Number:	12015
Test Date [.]	26-Aug-14


Test Date: 26-Aug-14 Start Time: 9:48 Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 59.40 Total Sample Wt. (g): 23971.00 Wt. Passing #4 (g): 18117.64

	Time	Temp	R	R_{L}	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.5	37.0	6.0	31.0	10.2	0.04279	52.2	39.5
	2	21.5	32.0	6.0	26.0	11.1	0.03145	43.8	33.1
	5	21.5	26.5	6.0	20.5	12.0	0.02069	34.6	26.1
	15	21.4	25.0	6.0	19.0	12.2	0.01208	32.0	24.2
	30	21.4	22.5	6.0	16.5	12.6	0.00868	27.8	21.0
	60	21.5	20.0	6.0	14.0	13.0	0.00623	23.6	17.9
	120	21.5	18.0	6.0	12.0	13.3	0.00446	20.3	15.3
	253	21.4	17.5	6.0	11.5	13.4	0.00309	19.4	14.7
	436	21.4	17.0	6.0	11.0	13.5	0.00236	18.6	14.0
27-Aug-14	1423	21.4	14.5	6.0	8.5	13.9	0.00132	14.3	10.8

Comments:

* Dispersion device: mechanically operated stirring device

Laboratory analysis by: S. Hanhardt Data entered by: C. Krous Checked by: J. Hines

[†] Greater than 10% of sample is coarse material

Note: Reported values for d₁₀, C_u, C_c, and ASTM classification are estimates, since extrapolation was required to obtain the d₁₀ diameter

Particle Size Analysis Wet Sieve Data (#4 Split)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: Topsoil-1 Project Name: VVL Composite Samples PO Number: 12015				Initial Dry Weight of Sample (g): 13376 Weight Passing #4 (g): 13316 Weight Retained #4 (g): 59.96 Weight of Hydrometer Sample (g): 60.44 Calculated Weight of Sieve Sample (g): 60.71			
Test Date:	3-Sep-14				Shape: Hardness:	Rounded Soft	
Test Fraction	Sieve Number	Diameter (mm)	Wt. Retained	Cum Wt. Retained	Wt. Passing	% Passing	
+4	3" 2" 1.5" 1" 3/4"	75 50 38.1 25 19.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	13376.20 13376.20 13376.20 13376.20 13376.20 13376.20	100.00 100.00 100.00 100.00 100.00	
	3/8" 4	9.5 4.75	12.81 47.15	12.81 59.96	13363.39 13316.24	99.90 99.55	
-4	10 20 40 60 140 200 dry pan wet pan	2.00 0.85 0.425 0.250 0.106 0.075 $d_{10} \text{ (mm):}$ $d_{16} \text{ (mm):}$ $d_{30} \text{ (mm):}$ <i>Median</i>	1.89 2.12 2.02 3.19 10.06 3.75 0.89 0.0036 0.0059 0.018 Particle Diame pefficient, Cu[llated sieve wt.) 2.16 4.28 6.30 9.49 19.55 23.30 24.19 36.52 d_{50} (mm): d_{60} (mm): d_{84} (mm): <i>ter</i> d_{50} (mm): d_{60}/d_{10}] (mm): $d_{10}^*d_{60}$] (mm):	58.55 56.43 54.41 51.22 41.16 37.41 36.52 0.00 0.047 0.070 0.25 0.047 19	96.44 92.95 89.62 84.37 67.80 61.62	
Mean Particle Diameter[(d ₁₆ +d ₅₀ +d ₈₄)/3] (mm): 0.10 Classification of fines (visual method): ML							
ASTM Soil Classification: Sandy silt s(ML) USDA Soil Classification: Loam							
Laboratory analysis by: J. Fisher Data entered by: C. Krous Checked by: J. Hines							

Particle Size Analysis Hydrometer Data

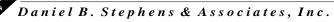
Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	Topsoil-1
Project Name:	VVL Composite Samples
PO Number:	12015
Test Date [.]	26-Aug-14

Start Time: 9:36


Type of Water Used: DISTILLED Reaction with H₂O₂: NA Dispersant*: (NaPO₃)₆ Assumed particle density: 2.65 Initial Wt. (g): 60.44 Total Sample Wt. (g): 13376.20 Wt. Passing #4 (g): 13316.24

	Time	Temp	R	R_L	R _{corr}	L	D	Р	
Date	(min)	(°C)	(g/L)	(g/L)	(g/L)	(cm)	(mm)	(%)	% Finer
26-Aug-14	1	21.5	35.0	6.0	29.0	10.6	0.04347	48.0	47.8
	2	21.5	32.0	6.0	26.0	11.1	0.03145	43.1	42.9
	5	21.5	25.5	6.0	19.5	12.1	0.02083	32.3	32.2
	15	21.5	20.0	6.0	14.0	13.0	0.01246	23.2	23.1
	30	21.4	18.0	6.0	12.0	13.3	0.00893	19.9	19.8
	60	21.5	16.5	6.0	10.5	13.6	0.00637	17.4	17.3
	120	21.5	13.0	6.0	7.0	14.2	0.00460	11.6	11.6
	254	21.4	11.5	6.0	5.5	14.4	0.00319	9.1	9.1
	446	21.4	11.5	6.0	5.5	14.4	0.00241	9.1	9.1
27-Aug-14	1427	21.4	9.5	6.0	3.5	14.7	0.00136	5.8	5.8

Comments:


* Dispersion device: mechanically operated stirring device

Laboratory analysis by: S. Hanhardt Data entered by: C. Krous Checked by: J. Hines

Atterberg Limits/ Identification of Fines

Summary of Atterberg Tests

Sample Number	Liquid Limit	Plastic Limit	Plasticity Index	Classification
VVL Composite 0-10	75	25	50	СН
VVL Composite 11-15	33	27	6	ML
VVL Composite 16-20	54	24	30	СН
VVL Composite 21-30	68	25	43	СН
VVL Composite 31+	65	30	35	СН
VVL Composite TP-10	38	24	14	CL
VVL Composite TP-12	72	25	47	CH
VVL Composite TP-13	66	26	40	СН
WB Borrow-1	34	23	11	CL
WB Stockpile-1	31	19	12	CL
WB Stockpile-2	32	21	11	CL
Topsoil-1				ML

--- = Soil requires visual-manual classification due to non-plasticity

Atterberg Limits

lydrometrics, Inc.
B14.0168.00
VL Composite 0-10
VL Composite Samples
2015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	38	29	18
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	125.24	128.04	123.86
Weight of pan plus dry soil (g)	121.13	123.60	119.76
Weight of pan (g):	115.27	117.57	114.55
Gravimetric moisture content (% g/g):	70.14	73.63	78.69

Liquid Limit:

Plastic Limit

75

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	122.76	118.35
Weight of pan plus dry soil (g)	121.47	117.08
Weight of pan (g):	116.43	112.07
Gravimetric moisture content (% g/g):	25.60	25.35
Plastic Limit:	25	

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	75
Plastic Limit:	25
Plasticity Index:	50

Classification: СН

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Hydrometrics, Inc.
LB14.0168.00
VVL Composite 11-15
VVL Composite Samples
12015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	31	23	16
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	127.88	123.40	124.43
Weight of pan plus dry soil (g)	124.91	120.20	121.35
Weight of pan (g):	115.62	110.85	112.67
Gravimetric moisture content (% g/g):	31.97	34.22	35.48

Liquid Limit:

Plastic Limit

33

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	120.24	123.10
Weight of pan plus dry soil (g)	118.66	121.70
Weight of pan (g):	112.69	116.48
Gravimetric moisture content (% g/g):	26.47	26.82
Plastic Limit:	27	

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	33
Plastic Limit:	27
Plasticity Index:	6
Classification:	ML

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Hydrometrics, Inc.
LB14.0168.00
VVL Composite 16-20
VVL Composite Samples
12015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	33	26	18
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	128.15	130.81	130.75
Weight of pan plus dry soil (g)	124.54	126.16	127.49
Weight of pan (g):	117.50	117.45	121.84
Gravimetric moisture content (% g/g):	51.28	53.39	57.70

Liquid Limit:

Plastic Limit

54

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	121.56	118.60
Weight of pan plus dry soil (g)	120.45	117.48
Weight of pan (g):	115.78	112.70
Gravimetric moisture content (% g/g):	23.77	23.43
Plastic Limit:	24	

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	54
Diantia Limite	04

Plastic Limit:	24
Plasticity Index:	30
Classification:	СН

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Hydrometrics, Inc.
LB14.0168.00
VVL Composite 21-30
VVL Composite Samples
12015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	37	29	17
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	122.68	128.07	123.11
Weight of pan plus dry soil (g)	119.77	123.39	118.34
Weight of pan (g):	115.16	116.46	111.63
Gravimetric moisture content (% g/g):	63.12	67.53	71.09

Liquid Limit:

Plastic Limit

68

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	117.97	117.74
Weight of pan plus dry soil (g)	116.88	116.63
Weight of pan (g):	112.58	112.27
Gravimetric moisture content (% g/g):	25.35	25.46
Plastic Limit:	25	

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	68
Plastic Limit:	25
Plasticity Index:	43
Classification:	СН

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	VVL Composite 31+
Project Name:	VVL Composite Samples
PO Number:	12015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	34	26	17
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	125.02	120.06	126.62
Weight of pan plus dry soil (g)	121.86	117.36	123.29
Weight of pan (g):	116.80	113.15	118.40
Gravimetric moisture content (% g/g):	62.45	64.13	68.10

Liquid Limit:

Plastic Limit

65

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	116.83	115.29
Weight of pan plus dry soil (g)	115.82	114.30
Weight of pan (g):	112.50	110.99
Gravimetric moisture content (% g/g):	30.42	29.91
Plastic Limit:	30	

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	65
Plastic Limit:	30
Plasticity Index:	35

Classification: CH

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Hydrometrics, Inc.
LB14.0168.00
VVL Composite TP-10
VVL Composite Samples
12015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	34	25	17
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	122.13	120.28	127.26
Weight of pan plus dry soil (g)	119.79	117.92	124.28
Weight of pan (g):	113.15	111.65	116.87
Gravimetric moisture content (% g/g):	35.24	37.64	40.22

Liquid Limit:

Plastic Limit

38

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	119.47	124.67
Weight of pan plus dry soil (g)	118.23	123.39
Weight of pan (g):	113.24	118.05
Gravimetric moisture content (% g/g):	24.85	23.97
Plastic Limit:	24	

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	38
Plastic Limit:	24
Plasticity Index:	14

Classification: CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

rometrics, Inc.
4.0168.00
Composite TP-12
Composite Samples
15

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	36	27	16
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	123.57	126.48	129.17
Weight of pan plus dry soil (g)	118.90	122.32	123.22
Weight of pan (g):	112.01	116.50	115.32
Gravimetric moisture content (% g/g):	67.78	71.48	75.32

Liquid Limit:

Plastic Limit

72

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	120.39	123.08
Weight of pan plus dry soil (g)	119.14	121.52
Weight of pan (g):	114.22	115.17
Gravimetric moisture content (% g/g):	25.41	24.57
Plastic Limit:	25	

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	72
Plastic Limit:	25

Flastic Linnit.	20
Plasticity Index:	47
Classification:	СН

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Hydrometrics, Inc.
LB14.0168.00
VVL Composite TP-13
VVL Composite Samples
12015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	35	24	16
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	123.88	130.58	126.31
Weight of pan plus dry soil (g)	120.50	125.25	120.74
Weight of pan (g):	115.14	117.17	112.62
Gravimetric moisture content (% g/g):	63.06	65.97	68.60

Liquid Limit:

Plastic Limit

66

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	123.03	123.36
Weight of pan plus dry soil (g)	121.84	121.95
Weight of pan (g):	117.20	116.43
Gravimetric moisture content (% g/g):	25.65	25.54
Plastic Limit:	26	

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	66
Plastic Limit:	26
Plasticity Index:	40
Classification:	СН

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Borrow-1
Project Name:	VVL Composite Samples
PO Number:	12015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	35	25	15
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	123.38	129.04	131.33
Weight of pan plus dry soil (g)	120.86	125.55	127.80
Weight of pan (g):	113.25	115.28	117.68
Gravimetric moisture content (% g/g):	33.11	33.98	34.88

Liquid Limit:

Plastic Limit

34

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	124.05	123.75
Weight of pan plus dry soil (g)	122.82	122.37
Weight of pan (g):	117.45	116.40
Gravimetric moisture content (% g/g):	22.91	23.12
Plastic Limit:	23	

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	34
Plastic Limit:	23

Plasticity Index: 11 Classification: CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-1
Project Name:	VVL Composite Samples
PO Number:	12015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	35	23	15
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	129.45	125.98	128.64
Weight of pan plus dry soil (g)	126.43	123.72	125.41
Weight of pan (g):	116.30	116.29	115.32
Gravimetric moisture content (% g/g):	29.81	30.42	32.01

Liquid Limit:

Plastic Limit

31

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	122.02	125.40
Weight of pan plus dry soil (g)	120.73	123.94
Weight of pan (g):	114.03	116.43
Gravimetric moisture content (% g/g):	19.25	19.44
Plastic Limit:	19	

Results

Percent of Sample Retained of	See Sieve	
	Liquid Limit:	31

Plastic Limit:	19
Plasticity Index:	12
Classification:	CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Atterberg Limits

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	WB Stockpile-2
Project Name:	VVL Composite Samples
PO Number:	12015

Test Date: 28-Aug-14

Liquid Limit

	Trial 1	Trial 2	Trial 3
Number of drops:	37	24	15
Pan number:	LL1	LL2	LL3
Weight of pan plus moist soil (g):	123.81	120.88	126.63
Weight of pan plus dry soil (g)	120.98	118.52	123.03
Weight of pan (g):	111.87	111.22	112.63
Gravimetric moisture content (% g/g):	31.06	32.33	34.62

Liquid Limit:

Plastic Limit

32

	Trial 1	Trial 2
Pan number:	PL1	PL2
Weight of pan plus moist soil (g):	132.30	123.91
Weight of pan plus dry soil (g)	130.86	122.42
Weight of pan (g):	124.11	115.37
Gravimetric moisture content (% g/g):	21.33	21.13
Plastic Limit:	21	

Results

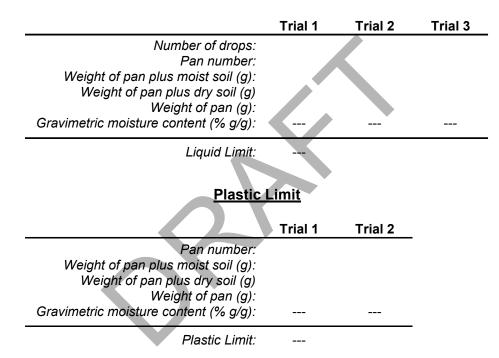
Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	32
Plastic Limit:	21
Plasticitv Index:	11

Classification: CL

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client



Atterberg Limits

Job Name:	Hydrometrics, Inc.
Job Number:	LB14.0168.00
Sample Number:	Topsoil-1
Project Name:	VVL Composite Samples
PO Number:	12015

Test Date: 28-Aug-14

Liquid Limit

Results

Percent of Sample Retained on #40 Sieve:	See Sieve
Liquid Limit:	
Plastic Limit:	
Plasticity Index:	
Classification (Visual Method):	ML

Comments:

--- = Soil requires visual-manual classification due to non-plasticity

* = 1-point method requested by client

Data for Description and Identification of Fines (Visual-Manual Procedure)

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: Topsoil-1 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 28-Aug-14

Visual-manual classification of material passing the #40 sieve in lieu of Atterberg analysis due to non-plasticity:

Descriptive Information:

Color of Moist Sample: Black (10YR 2/1) Odor: None Moisture Condition: Moist HCl Reaction: None

Preliminary Identification:

Dry Strength: Low Dilatency: Rapid Toughness: Low Plasticity: Non-plastic

Identification of Inorganic Fine Grained Soils:

Silt (ML)

	Measured		Oversize	Corrected
	Optimum Moisture Content	Maximum Dry Bulk Density	Optimum Moisture Content	Maximum Dry Bulk Density
Sample Number	(% g/g)	(g/cm ³)	(% g/g)	(g/cm ³)
VVL Composite 0-10	17.6	1.72	13.6	1.87
VVL Composite 11-15	15.0	1.76	12.2	1.88
VVL Composite 16-20	17.9	1.71	15.3	1.80
VVL Composite 21-30	19.5	1.62	15.5	1.76
VVL Composite 31+	27.5	1.44	24.2	1.52
VVL Composite TP-10	16.7	1.77	13.1	1.90
VVL Composite TP-12	19.5	1.65	15.7	1.78
VVL Composite TP-13	22.2	1.61	19.3	1.69
WB Borrow-1	18.9	1.67	16.6	1.75
WB Stockpile-1	15.8	1.79	14.4	1.84
WB Stockpile-2	17.3	1.74	13.0	1.89
Topsoil-1	29.2	1.30		

Summary of Proctor Compaction Tests

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

NR = Not requested

NA = Not applicable

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 0-10 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 28-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): 3/4 Mass of coarse material (g): 22.65578242 Mass of fines material (g): 77.34421758 Mold weight (g): 5573 Mold volume (cm³): 2123.94 Compaction Method: Standard C Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	9653	820.83	747.66	283.83	1.66	15.78
2	9835	759.30	688.16	270.63	1.71	17.04
3	9877	769.95	688.56	283.91	1.69	20.11
4	9837	788.91	702.86	298.48	1.66	21.28
5	9888	710.02	644.20	289.72	1.71	18.57

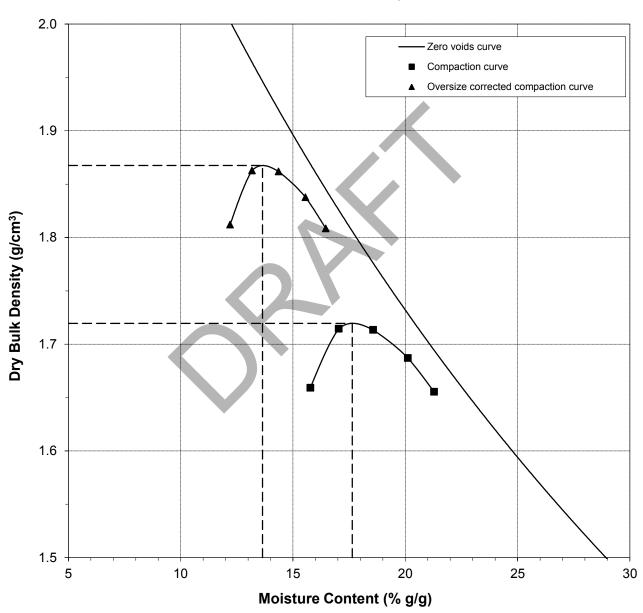
Soil Fractions Coarse Fraction (% g/g): 22.7 Fines Fraction (% g/g): 77.3 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.81	12.20
2	1.86	13.18
3	1.84	15.56
4	1.81	16.46
5	1.86	14.36


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: VVL Composite 0-10

	Measured	Corrected
Optimum Moisture Content (% g/g):	17.6	13.6
Maximum Dry Bulk Density (g/cm ³):	1.72	1.87

Test Date: 28-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 11-15 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 27-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): 3/4 Mass of coarse material (g): 18.96896728 Mass of fines material (g): 81.03103272 Mold weight (g): 5573 Mold volume (cm³): 2123.94 Compaction Method: Standard C Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	9635	759.53	717.50	296.54	1.74	9.98
2	9790	797.27	736.22	263.78	1.76	12.92
3	9916	951.47	859.39	287.01	1.76	16.09
4	9916	960.93	855.36	297.88	1.72	18.94
5	9868	820.15	732.17	301.51	1.68	20.43

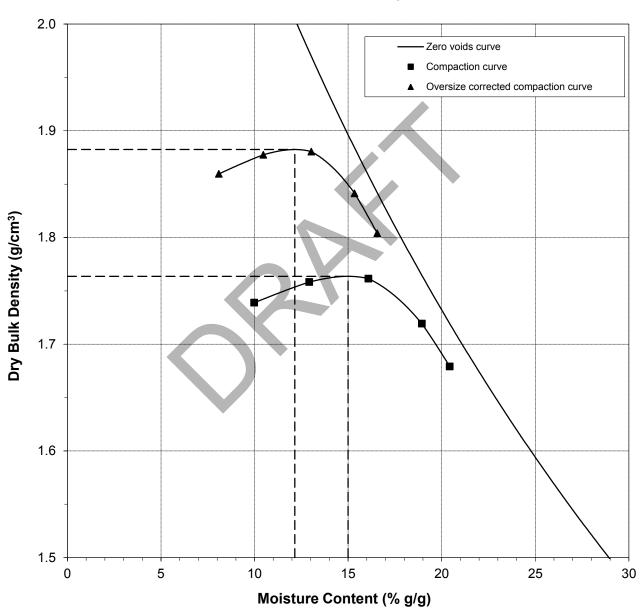
<u>Soil Fractions</u> Coarse Fraction (% g/g): 19.0 Fines Fraction (% g/g): 81.0 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.86	8.09
2	1.88	10.47
3	1.88	13.04
4	1.84	15.34
5	1.80	16.55


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: VVL Composite 11-15

	Measured	Corrected
Optimum Moisture Content (% g/g):	15.0	12.2
Maximum Dry Bulk Density (g/cm ³):	1.76	1.88

Test Date: 27-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 16-20 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 29-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): 3/4 Mass of coarse material (g): 14.47967073 Mass of fines material (g): 85.52032927 Mold weight (g): 5573 Mold volume (cm³): 2123.94 Compaction Method: Standard C Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	9490	808.77	748.56	284.74	1.63	12.98
2	9602	662.50	605.49	207.42	1.66	14.32
3	9846	785.87	711.57	297.45	1.71	17.94
4	9835	746.56	661.05	268.94	1.65	21.81
5	9845	744.09	668.31	296.82	1.67	20.40

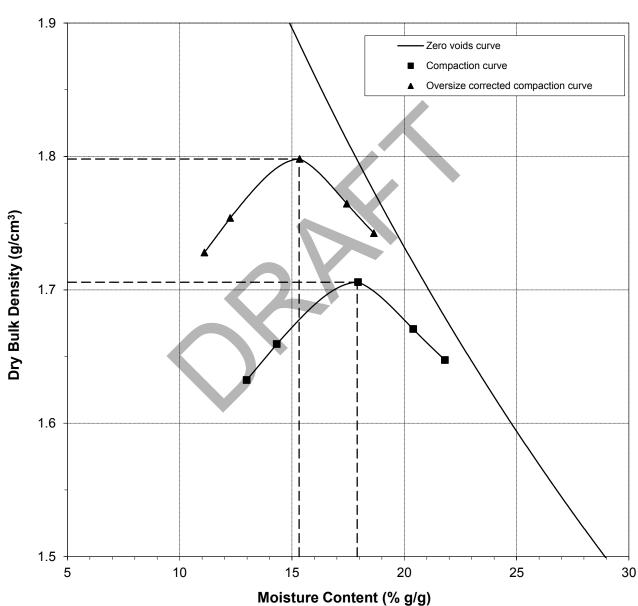
<u>Soil Fractions</u> Coarse Fraction (% g/g): 14.5 Fines Fraction (% g/g): 85.5 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.73	11.10
2	1.75	12.25
3	1.80	15.34
4	1.74	18.65
5	1.76	17.45


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: VVL Composite 16-20

	Measured	Corrected
Optimum Moisture Content (% g/g):	17.9	15.3
Maximum Dry Bulk Density (g/cm ³):	1.71	1.80

Test Date: 29-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 21-30 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 27-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): 3/4 Mass of coarse material (g): 20.52072038 Mass of fines material (g): 79.47927962 Mold weight (g): 5573 Mold volume (cm³): 2123.94 Compaction Method: Standard C Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	9463	831.71	756.65	289.61	1.58	16.07
2	9671	891.57	794.90	283.08	1.62	18.89
3	9735	703.94	632.46	298.93	1.61	21.43
4	9714	743.70	653.29	283.51	1.57	24.45
5	9625	748.27	647.80	298.48	1.48	28.76

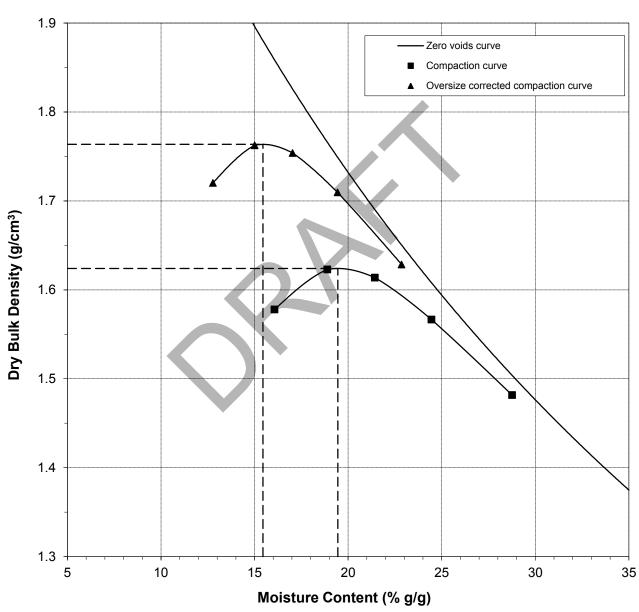
<u>Soil Fractions</u> Coarse Fraction (% g/g): 20.5 Fines Fraction (% g/g): 79.5 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

Dry Bulk Density of Composite	Moisture Content of Composite
(g/cm ³)	(% g/g)
1.72	12.77
1.76	15.01
1.75	17.03
1.71	19.43
1.63	22.86
	Density of Composite (g/cm ³) 1.72 1.76 1.75 1.71


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: VVL Composite 21-30

	Measured	Corrected
Optimum Moisture Content (% g/g):	19.5	15.5
Maximum Dry Bulk Density (g/cm ³):	1.62	1.76

Test Date: 27-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite 31+ Project Name: VVL Composite Samples PO Number: 12015

Test Date: 25-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): 3/4 Mass of coarse material (g): 12.02166167 Mass of fines material (g): 87.97833833 Mold weight (g): 5573 Mold volume (cm³): 2123.94 Compaction Method: Standard C Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	9178	809.35	721.54	289.58	1.41	20.33
2	9377	797.94	696.92	293.65	1.43	25.05
3	9500	693.05	585.64	212.71	1.44	28.80
4	9485	776.19	656.97	269.82	1.41	30.79
5	9495	806.02	679.15	282.81	1.40	32.01

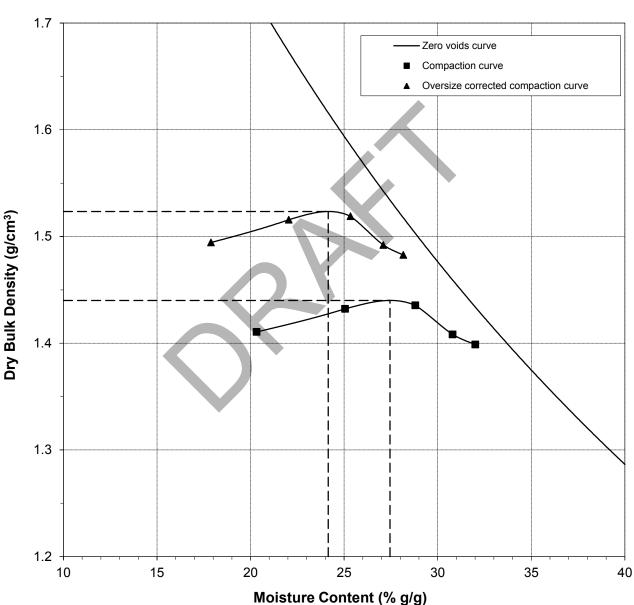
Soil Fractions Coarse Fraction (% g/g): 12.0 Fines Fraction (% g/g): 88.0 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.49	17.88
2	1.52	22.04
3	1.52	25.34
4	1.49	27.09
5	1.48	28.16


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: VVL Composite 31+

	Measured	Corrected
Optimum Moisture Content (% g/g):	27.5	24.2
Maximum Dry Bulk Density (g/cm ³):	1.44	1.52

Test Date: 25-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-10 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 25-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): 3/4 Mass of coarse material (g): 21.58382813 Mass of fines material (g): 78.41617187 Mold weight (g): 5573 Mold volume (cm³): 2123.94 Compaction Method: Standard C Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	9738	877.42	815.53	297.96	1.75	11.96
2	9860	872.01	795.83	284.26	1.76	14.89
3	9963	881.31	792.81	268.40	1.77	16.88
4	9903	889.17	792.26	287.76	1.71	19.21
5	9826	897.08	792.53	283.37	1.66	20.53

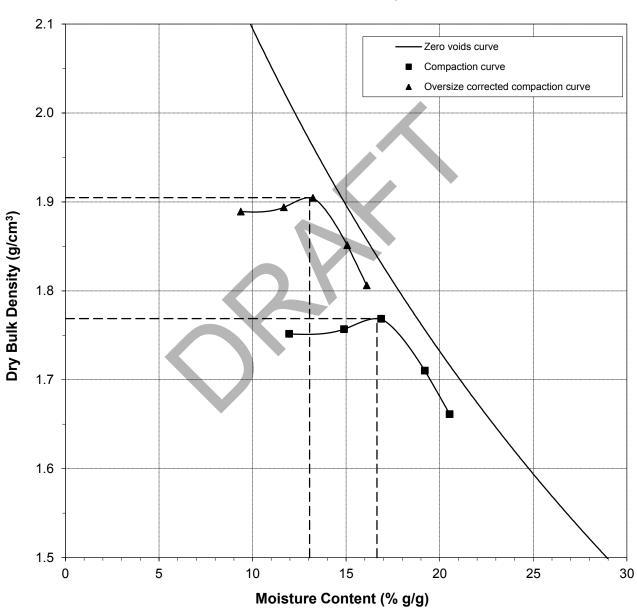
<u>Soil Fractions</u> Coarse Fraction (% g/g): 21.6 Fines Fraction (% g/g): 78.4 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.89	9.38
2	1.89	11.68
3	1.90	13.23
4	1.85	15.06
5	1.81	16.10


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: VVL Composite TP-10

	Measured	Corrected
Optimum Moisture Content (% g/g):	16.7	13.1
Maximum Dry Bulk Density (g/cm ³):	1.77	1.90

Test Date: 25-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-12 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 25-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): 3/4 Mass of coarse material (g): 19.61353072 Mass of fines material (g): 80.38646928 Mold weight (g): 5573 Mold volume (cm³): 2123.94 Compaction Method: Standard C Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	9492	915.22	834.08	292.88	1.60	14.99
2	9609	824.82	742.57	269.39	1.62	17.38
3	9757	838.90	748.21	282.26	1.65	19.46
4	9764	785.82	693.99	282.98	1.61	22.34
5	9741	792.02	697.66	298.97	1.59	23.67

<u>Soil Fractions</u> Coarse Fraction (% g/g): 19.6 Fines Fraction (% g/g): 80.4 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.74	12.05
2	1.75	13.97
3	1.78	15.65
4	1.75	17.96
5	1.72	19.03

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: VVL Composite TP-12

	Measured	Corrected
Optimum Moisture Content (% g/g):	19.5	15.7
Maximum Dry Bulk Density (g/cm ³):	1.65	1.78

Test Date: 25-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: VVL Composite TP-13 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 28-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): 3/4 Mass of coarse material (g): 13.13755554 Mass of fines material (g): 86.86244446 Mold weight (g): 5573 Mold volume (cm³): 2123.94 Compaction Method: Standard C Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	9411	861.24	774.20	291.07	1.53	18.02
2	9561	803.80	713.95	269.71	1.56	20.23
3	9740	702.11	628.21	294.40	1.61	22.14
4	9728	816.59	710.13	267.89	1.58	24.07
5	9686	677.50	583.39	210.09	1.55	25.21

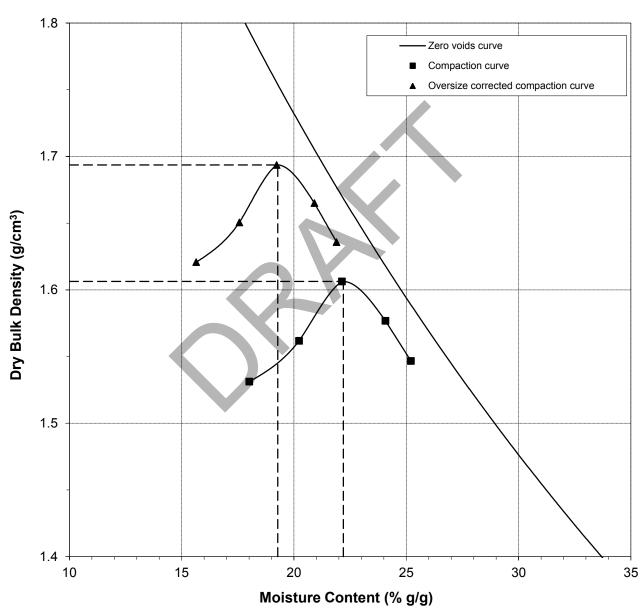
<u>Soil Fractions</u> Coarse Fraction (% g/g): 13.1 Fines Fraction (% g/g): 86.9 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.62	15.65
2	1.65	17.57
3	1.69	19.23
4	1.66	20.91
5	1.64	21.90


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: VVL Composite TP-13

	Measured	Corrected
Optimum Moisture Content (% g/g):	22.2	19.3
Maximum Dry Bulk Density (g/cm ³):	1.61	1.69

Test Date: 28-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Borrow-1 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 18-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 12.36129352 Mass of fines material (g): 87.63870648 Mold weight (g): 4202 Mold volume (cm³): 943.95 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	5957	893.63	815.95	298.92	1.62	15.02
2	6023	869.88	785.66	283.53	1.65	16.77
3	6081	946.46	841.82	289.70	1.67	18.95
4	6073	896.77	789.99	284.53	1.64	21.13
5	6057	859.69	749.87	268.23	1.60	22.80

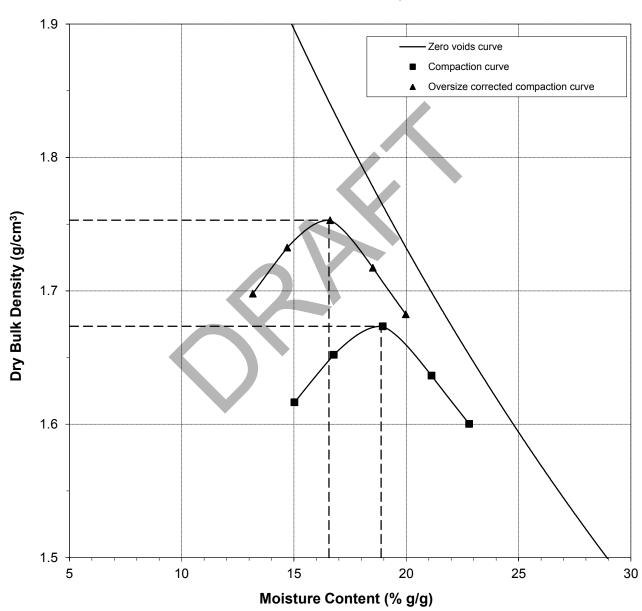
<u>Soil Fractions</u> Coarse Fraction (% g/g): 12.4 Fines Fraction (% g/g): 87.6 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.70	13.17
2	1.73	14.70
3	1.75	16.61
4	1.72	18.51
5	1.68	19.98


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: WB Borrow-1

	Measured	Corrected
Optimum Moisture Content (% g/g):	18.9	16.6
Maximum Dry Bulk Density (g/cm ³):	1.67	1.75

Test Date: 18-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Stockpile-1 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 18-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 8.732531931 Mass of fines material (g): 91.26746807 Mold weight (g): 4202 Mold volume (cm³): 943.95 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	5931	899.16	837.35	268.45	1.65	10.86
2	6063	890.36	818.88	291.60	1.74	13.56
3	6152	975.79	884.42	292.25	1.79	15.43
4	6163	911.60	816.97	269.40	1.77	17.28
5	6124	828.59	741.84	284.28	1.71	18.96

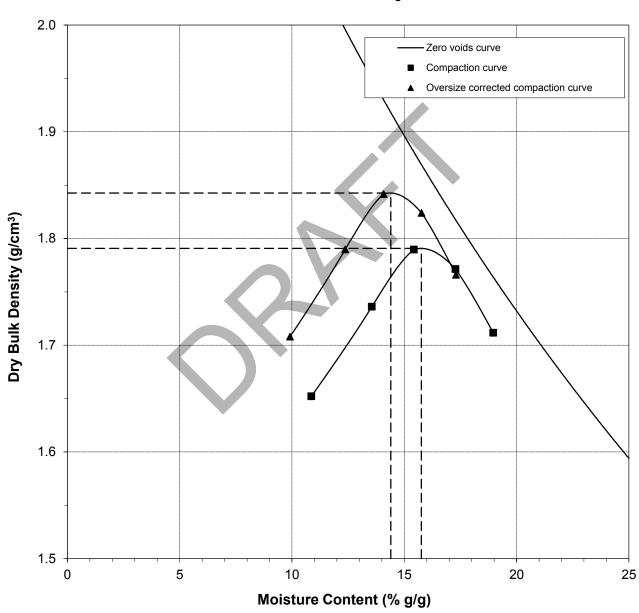
Soil Fractions Coarse Fraction (% g/g): 8.7 Fines Fraction (% g/g): 91.3 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.71	9.92
2	1.79	12.37
3	1.84	14.08
4	1.82	15.77
5	1.77	17.30


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: WB Stockpile-1

	Measured	Corrected
Optimum Moisture Content (% g/g):	15.8	14.4
Maximum Dry Bulk Density (g/cm ³):	1.79	1.84

Test Date: 18-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: WB Stockpile-2 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 18-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 24.41850569 Mass of fines material (g): 75.58149431 Mold weight (g): 4202 Mold volume (cm³): 943.95 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	5947	915.75	844.89	282.91	1.64	12.61
2	6012	870.38	795.77	296.98	1.67	14.96
3	6115	901.64	809.03	260.81	1.73	16.89
4	6123	885.81	788.45	269.39	1.71	18.76
5	6082	901.93	795.56	286.96	1.65	20.91

<u>Soil Fractions</u> Coarse Fraction (% g/g): 24.4 Fines Fraction (% g/g): 75.6 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1	1.81	9.53
2	1.83	11.31
3	1.89	12.77
4	1.87	14.18
5	1.81	15.81


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: WB Stockpile-2

	Measured	Corrected
Optimum Moisture Content (% g/g):	17.3	13.0
Maximum Dry Bulk Density (g/cm ³):	1.74	1.89

Test Date: 18-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data

Job Name: Hydrometrics, Inc. Job Number: LB14.0168.00 Sample Number: Topsoil-1 Project Name: VVL Composite Samples PO Number: 12015

Test Date: 18-Aug-14

As Received Moisture Content (% g/g): NA

Split (3/4", 3/8", #4): #4 Mass of coarse material (g): 0.448258848 Mass of fines material (g): 99.55174115 Mold weight (g): 4202 Mold volume (cm³): 943.95 Compaction Method: Standard A Preparation Method: Dry

Type of Rammer: Mechanical

	Weight of Mold and Compacted Soil	Weight of Container and Wet Soil	Weight of Container and Dry Soil	Weight of Container	Dry Bulk Density	Moisture Content
Trial	(g)	(g)	(g)	(g)	(g/cm ³)	(% g/g)
1	5647	694.32	610.48	267.63	1.23	24.45
2	5692	722.05	629.50	284.32	1.24	26.81
3	5785	729.90	629.86	284.77	1.30	28.99
4	5786	693.11	593.03	271.92	1.28	31.17
5	5803	772.55	644.43	269.55	1.26	34.18

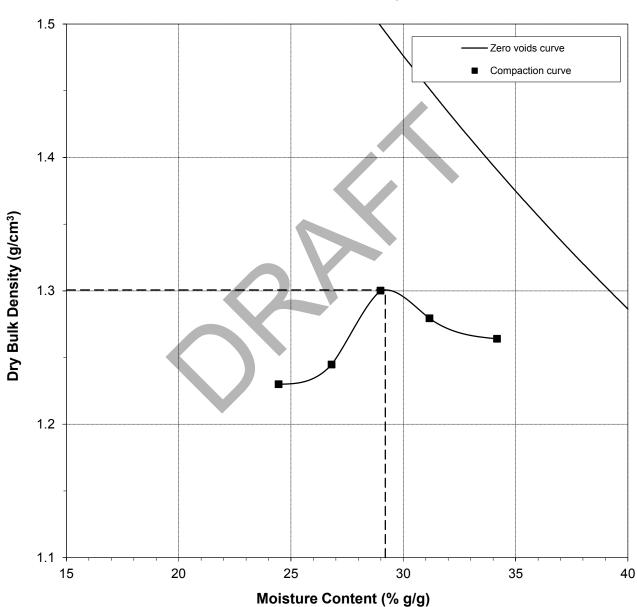
<u>Soil Fractions</u> Coarse Fraction (% g/g): 0.4 Fines Fraction (% g/g): 99.6 Properties of Coarse Material

Assumed particle density (g/cm³): 2.65

Assumed Initial Moisture Content (% g/g): 0.0

Oversize Corrected Values for Dry Bulk Density and Moisture Content

	Dry Bulk Density of Composite	Moisture Content of Composite
Trial	(g/cm ³)	(% g/g)
1		
2		
3		
4		
5		


--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Proctor Compaction Data Points with Fitted Curve

Sample Number: Topsoil-1

	Measured	Corrected
Optimum Moisture Content (% g/g):	29.2	
Maximum Dry Bulk Density (g/cm ³):	1.30	

Test Date: 18-Aug-14

--- = Oversize correction is unnecessary since coarse fraction < 5% of composite mass

Tests and Methods

Dry Bulk Density:	ASTM D7263
Moisture Content:	ASTM D7263
Calculated Porosity:	ASTM D7263
Saturated Hydraulic Conductivit Constant Head: (Rigid Wall)	y: ASTM D 2434 (modified apparatus)
Hanging Column Method:	ASTM D6836 (modified apparatus)
Pressure Plate Method:	ASTM D6836 (modified apparatus)
Water Potential (Dewpoint Potentiometer) Method:	ASTM D6836
Relative Humidity (Box) Method:	Campbell, G. and G. Gee. 1986. Water Potential: Miscellaneous Methods. Chp. 25, pp. 631-632, in A. Klute (ed.), Methods of Soil Analysis. Part 1. American Society of Agronomy, Madison, WI; Karathanasis & Hajek. 1982. Quantitative Evaluation of Water Adsorption on Soil Clays. SSA Journal 46:1321-1325
Moisture Retention Characteristics & Calculated Unsaturated Hydraulic Conductivity:	ASTM D6836; van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. SSSAJ 44:892-898; van Genuchten, M.T., F.J. Leij, and S.R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma. EPA/600/2091/065. December 1991
Particle Size Analysis:	ASTM D422
USCS (ASTM) Classification:	ASTM D422, ASTM D2487
USDA Classification:	ASTM D422, USDA Soil Textural Triangle
Atterberg Limits:	ASTM D4318
Visual-Manual Description:	ASTM D2488
Standard Proctor Compaction:	ASTM D698
Coarse Fraction (Gravel) Correction (calc):	ASTM D4718; Bouwer, H. and Rice, R.C. 1984. Hydraulic Properties of Stony Vadose Zones. Groundwater Vol. 22, No. 6
Water Holding Capacity (calc):	ASTM D6836; Stephens, D. B. 1996, pp.11-12, Vadose Zone Hydrology. CRC Press, Inc., Boca Raton, FL

Attachment 2 Estimated Performance of an Evapotranspiration Cover for the Former ASARCO Smelter Site

Estimated performance of an evapotranspiration cover for the Former ASARCO Smelter Site

William H Albright, PhD

This report summarizes estimates of required and available water storage relative to design of an evapotranspiration final cover for the Former ASARCO Smelter Site near East Helena, MT.

Evapotranspiration (ET), or water balance, covers for final closure of waste sites function by providing water storage in the cover soils for periods when precipitation exceeds evapotranspiration. The available_storage capacity in a soil profile can be calculated and is a product of the soil hydraulic properties and the cover thickness. The required storage capacity for an effective ET cover for a specific site can be difficult to estimate and requires consideration of temporal variation in precipitation, evaporation, and transpiration. The required storage required and required layer thickness to provide adequate available storage based on empirical results from large-scale field tests, monthly summaries of precipitation, evaporation, and transpiration, and soil properties of selected borrow soils.

The required storage is based on results from the Alternative Cover Assessment Program (ACAP) funded by the USEPA and is described in *Water Balance Covers for Waste Containment: Principles and Practice* (Albright, Benson, Waugh, ASTM Press, 2010). Estimates of required storage by the ACAP method are based on methods and coefficients derived from data collected in a nation-wide network of large-scale field tests of covers. Although semi-empirical, the required storage method has general applicability because of the large database (28 final cover test sections in 11 states monitored for 4-8 years) used to create the method.

Required Storage: Method

The required storage (S_r) is the design amount of water to be stored in the cover profile for a given site. Regression analysis of the ACAP data was used to identify two important factors: (1) monthly thresholds for the ratio of precipitation (P) to potential evapotranspiration (PET) beyond which water accumulates in an ET cover; and (2) the amount of water that accumulates in the soil profile in months with threshold exceedance. The ACAP data were segregated for sites with snow and frozen ground vs. sites without freezing conditions and by the warm and cool seasons in North America (fall-winter vs. spring-summer). At "cold" sites water accumulates when the monthly threshold for P/PET exceeds 0.51 (fall/winter) and 0.32 (spring/summer). The method assumes that during months when P/PET falls below these thresholds, water does not accumulate.

When the monthly threshold is exceeded the monthly accumulation of soil water storage (ΔS) can be computed using the water balance equation:

$$\Delta S = P - R - ET - L - P_r$$

(1)

where P is monthly precipitation, R is monthly runoff, ET is monthly evapotranspiration, L is monthly internal lateral drainage, and P_r is monthly percolation. Of the quantities on the right-hand side of Eq. 1, only P is available for design. However, ET can be assumed to be a fraction (β) of PET, L is usually very small and can be ignored (Albright et al. 2004). The remaining components, R and P_r, are combined into a loss term (Λ) to simplify Eq. 1 as:

$$\Delta S = P - \beta PET - \Lambda$$
 (2)

Values for β and Λ were obtained by fitting Eq. 2 to the ACAP data set (Apiwantragoon 2007). Thus, given defined values for β and Λ , Eq. 2 can be used to estimate the monthly accumulation in soil water storage using precipitation and PET data which are available for the former ASARCO site. For Montana ("cold" sites) β = 0.37 (fall/winter) and 1.00 (spring/summer) and Λ = 0.0 mm (fall/winter) and 167.8 mm (spring/summer).

Using the monthly thresholds for water accumulation and the β and Λ parameters for "cold sites", the required storage (S_r) in a design year can be estimated by summing the monthly Δ S for all fall/winter months and all spring/summer months:

$$S_{r} = \sum_{i=1}^{6} \Delta S_{i,FW} + \sum_{i=7}^{12} \Delta S_{i,SS}$$
(3)

where $\Delta S_{i,FW}$ is the change in storage during the ith month of fall and winter and $\Delta S_{i,SS}$ is the change in storage during the ith month of spring and summer. Both $\Delta S_{i,FW}$ and $\Delta S_{i,SS}$ are computed with Eq. 2 using monthly data and the β and Λ parameters. The terms $\Delta S_{i,FW}$ and $\Delta S_{i,SS}$ are included in Eq. 3 only for those months when the monthly P/PET exceeds the thresholds, and in only those cases where either term is greater than or equal to zero (i.e., terms less than zero are not included). Additional detail of this method is in (Albright et al. 2010).

Available storage: Method

Available storage is the product of the plant-available water storage capacity of the soil and the thickness of the cover. The plant-available water storage capacity of a cover can be calculated from the soil water characteristic curve (SWCC). The SWCC is typically analyzed in the lab (ASTM D6836) and produces data which may be fit with a least-squares method to the van Genuchten equation to describe a continuous relationship between soil water suction and volumetric soil water content. From that relationship two important points are calculated - the water contents of the soil at field capacity (33 kPa) and at wilting point (1500 kPa). The difference between these two points is called the "plant-available water holding capacity". This inherent storage characteristic of the soil (given in mm of stored water per unit depth of soil) multiplied by the thickness of the cover gives the storage capacity of a cover soil profile.

Results for Former ASARCO Smelter Site

Required storage for the Former ASARCO Smelter Site

Required storage was computed using P and PET data from the Western Regional Climate Center (WRCC), results are shown in Table 1. Free access to the National Land Data Assimilation System (NLDAS) (Mitchell et al., 2004) gridded weather data on the Google Earth Engine (GEE) cloud computing platform, has provided a unique opportunity to develop a complete historical time series of reference evapotranspiration (ETo) from 1979 to present. The Desert Research Institute has developed Python and JavaScript programs that are executed on the GEE cloud computing platform to rapidly process NLDAS gridded weather data for estimating ETo. Bias corrected and spatially disaggregated (BCSD) NLDAS gridded weather data of daily maximum and minimum air temperature (Tmax and Tmin), daily maximum and minimum relative humidity (RHmax and RHmin), solar radiation (Rs) and daily average windspeed at 2m height (u2) were utilized to estimate daily and monthly ETo. Daily NLDAS weather data available on the GEE were spatially disaggregated to a 4 km spatial resolution by Abatzoglou (2011) based on Parameter Regression on Independent Slopes Model (PRISM) (Daly, 2008) 4 km spatial resolution monthly temperature and precipitation data. Because a finer spatial resolution (<12 km) product of Rs and u2 does not exist, simple bilinear interpolation was performed to resample from 12 km to 4 km (Abatzoglou, 2011).

Available storage for the Former ASARCO Smelter Site

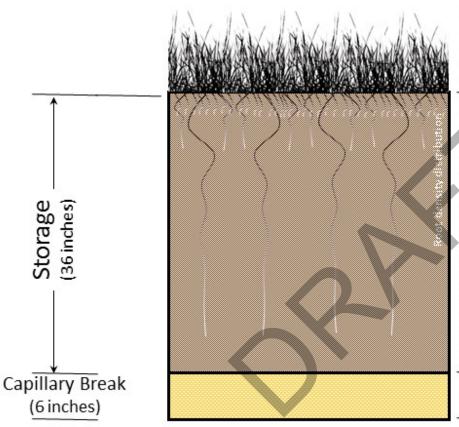
The soil thickness required to store the maximum required storage (49 mm, Table 1) is shown in Table 2 and was calculated for each soil sample using soil hydraulic property data supplied by Daniel B Stephens and Associates. The required soil layer thickness ranges between 0.21 and 0.80 m for as constructed conditions. The laboratory soil hydraulic property data were modified to reflect anticipated changes due to natural pedogenic processes including wet-dry and freeze-thaw cycles and biointrusion and required soil layer thickness ranges between 0.24 and 1.17 m. These natural processes typically increase porosity and introduce larger pores resulting in changes to soil storage properties. The effects of these processes were investigated at the ACAP research sites, results are reported in Benson et al. (2011) along with recommendations for adjustment factors for laboratory data. Soil layer thicknesses reflecting these recommendations required for storage of the maximum required storage value (49 mm) are also reported in Table 2. These required and available storage figures provide sufficient basis for a preliminary design of an ET cover for the smelter site. The calculated soil layer thicknesses to provide adequate soil water storage should be evaluated with regard to the thickness required to support the vegetative cover.

Year	Annual Precipitation (mm)	Annual PET (mm)	Annual Winter* Precipitation (mm)	Annual Required Storage (mm)
1979-80	335	1167	62	17
1980-81	393	1126	112	0
1981-82	310	1136	90	6
1982-83	265	1128	103	27
1983-84	364	1149	85	5
1984-85	168	1213	70	4
1985-86	304	1155	132	49
1986-87	301	1144	83	27
1987-88	269	1210	39	0
1988-89	262	1163	128	28
1989-90	276	1145	73	0
1990-91	287	1204	32	0
1991-92	230	1253	82	9
1992-93	331	1080	99	40
1992-94	372	1080	76	0
1994-95	266	1107	61	0
1995-96	297	1076	100	7
1996-97	264	1110	71	27
1997-98	353	1046	77	17
1998-99	268	1122	71	18
1999-00	202	1224	47	0
2000-01	249	1172	98	35
2001-02	36	201	60	0
2002-03	307	1130	79	0
2003-04	227	1241	53	0
2004-05	380	1129	78	0
2005-06	315	1288	93	16
2006-07	278	1283	107	20
2007-08	248	1258	96	0
2008-09	223	1232	84	8
2009-10	325	1179	71	4
2010-11	432	1148	111	41

Table 1. Annual precipitation, PET, winter precipitation and required storage estimated from climate data for the Former ASARCO Smelter Site.

* Winter precipitation is defined for this method as September through February.

Table 2. Unsaturated soil hydraulic parameters and the thickness of a layer of each soil required to store the maximum required storage (49 mm of water). Numbers in parentheses are corrected by the method described in the NRC report (Benson et al. 2011).


	escribed in	the NR	C report (Be	enson et al. 2	-			
Soil	α			Volume	etric water co	1 1		Soil thickness (m)
sample	(cm ⁻¹)	N	Residual	Saturated	Field capacity	Wilting point	Plant available	required to store 49 mm of water
EB-ET-1	0.0441 (0.0573)	1.29 (1.42)	0	20.2	9.1 (5.8)	3.0 (1.2)	6.1 (4.6)	0.80 (1.07)
EB-ET-2	0.0164 (0.0213)	1.34 (1.48)	0	25.2	13.6 (9.6)	3.8 (1.6)	9.8 (8.0)	0.50 (0.61)
EB-ET-3	0.0155 (0.0202)	1.31 (1.45)	1.42	39.9	23.8 (17.4)	8.4 (4.3)	15.4 (13.1)	0.32 (0.37)
VV-ET-1	0.0090 (0.0117)	1.20 (1.33)	0	45.2	34.7 (27.8)	16.5 (8.2)	18.2 (19.6)	0.27 (0.25)
VV-ET-2	0.0095 (0.0124)	1.23 (1.36)	1.81	38.8	28.9 (23.2)	13.4 (7.4)	15.5 (15.8)	0.32 (0.31)
VV-ET-3	0.0121 (0.0157)	1.28 (1.41)	1.83	35.6	23.9 (18.5)	9.6 (5.4	14.3 (13.1)	0.34 (0.37)
VVL Comp 0-10	0.0061 (0.0079)	1.30 (1.43)	1.12	44.6	28.9 (24.1)	10.5 (5.8)	18.4 (18.3)	0.27 (0.27)
VVL Comp 11-15	0.0140 (0.0181)	1.32 (1.45)	0.27	43.0	22.7 (16.7)	7.2 (3.3)	15.5 (13.4)	0.32 (0.37)
VVL Comp 16-20	0.0094 (0.0123)	1.26 (1.39	0.00	46.9	30.3 (23.9)	11.6 (5.6)	18.7 (18.3)	0.26 (0.27)
VVL Comp 21-30	0.0089 (0.0116)	1.26 (1.39)	0.00	48.7	30.7 (24.4)	11.8 (5.7)	18.9 (18.7)	0.26 (0.26)
VVL Comp 31+	0.0065 (0.0837)	1.21 (1.46)	0.00	57.4	43.2 (11.7)	20.3 (2.0)	22.9 (9.7)	0.21 (0.51)
VVL Comp TP-10	0.0231 (0.0300)	1.31 (1.44)	1.43	43.9	20.4 (14.4)	7.2 (3.7)	13.2 (10.7)	0.37 (0.46)
VVL Comp TP-12	0.0059 (0.0077)	1.30 (1.43)	3.43	46.8	32.0 (26.9)	13.0 (8.0)	19.0 (18.9)	0.26 (0.26)
VVL Comp TP-13	0.0083 (0.0108)	1.25 (1.37)	0.00	49.4	34.0 (27.3)	14.0 (7.0)	20.0 (20.3)	0.25 (0.24)
WB Borrow-1	0.0179 (0.0233)	1.29 (1.42)	1.94	47.4	26.6 (19.4)	10.3 (5.4)	16.3 (14.0)	0.30 (0.35)
WB Stockpile-1	0.0118 (0.1522)	1.29 (1.54)	1.45	44.3	27.8 (6.2	10.6 (2.0)	17.3 (4.2)	0.28 (1.17)
WB Stockpile-2	0.0153 (0.0199)	1.36 (1.50)	3.35	47.1	22.7 (17.0)	7.9 (5.0)	14.8 (12.0)	0.33 (0.41)
Topsoil-1	0.0137 (0.0177)	1.39 (1.52)	3.92	59.7	34.0 (25.6)	11.1 (7.0)	22.9 (18.6)	0.21 (0.26)

References

- Albright, W.H., Benson, C.H., and Waugh, W.J., 2010. Water Balance Covers for Waste Containment: Principles and Practice. ASCE Press, Reston VA.
- Albright, W., Benson, C., Gee, G., Roesler, A., Abichou, T., Apiwantragoon, P., Lyles, B., and Rock, S. (2004). "Field water balance of landfill final covers". *J. Environ. Qual.* 33(6), 2317-2332.
- Apiwantragoon, P. (2007). "Field hydrologic evaluation of final covers for waste containment." Ph.D. dissertation, University of Wisconsin, Madison, Wisc.
- Benson, C., Albright, W., Fratta, D., Tinjum, J., Kucukkirca, E., Lee, S., Scalia, J., Schlicht, P.,
 Wang, X. 2011. Engineered Covers for Waste Containment: Changes in Engineering
 Properties & Implications for Long-Term Performance Assessment, NUREG/CR-7028,
 Office of Research, U.S. Nuclear Regulatory Commission, Washington.

Attachment 3 HYDRUS Model Inputs Conceptual Diagram

Upper Boundary -Atmospheric Conditions Daily Precipitation 1979–2013 Helena Airport Station Meteorological data from Helena, MT AgriMet station and NLDAS data used to develop reference evapotranspiration.

Vegetation - PET Conditions

Total potential evapotranspiration calculated using grass as a reference crop and the reference evapotranspiration. End of month average leaf area index values used for western wheatgrass to calculate potential transpiration and remainder potential evaporation. Rooting depth distribution 32 inches and based on grassland plant communities test site near Helena, MT. Plant water stress parameters used for wheatgrassdominated vegetation community.

Storage Layer - Soil Hydraulic Model

Single porosity model, van Genuchten – Mualem water retention curve without hysteresis. Soil type specific parameters including van Genuchten soil parameters, saturated hydraulic conductivity, residual and saturated soil water content.

Capillary Break-Soil Hydraulic Model Coarse grained soil type used for every simulation

Lower Boundary – Free Drainage Free draining below capillary break layer considered percolation

Attachment 4 HYDRUS Model Results Summary

Sim9 VV-ET-3

			decadal sum	decadal sum	decadal sum	decadal sum	avg. daily bottom		average annual								
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal					Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm) precip (cm/year)	Runoff (cm)	Sim#	Date	ET Thick & K	CB Thick & K	Balance (%) No
1st	3653	79-88	214.3	645.8	107.6	198.5	-0.0044	-16.0070	-1.6007	303.2	30.3	0	Sim9	10/22/14	36" - VV-ET-3; Corrected	6" - EB-ET-2; Corrected	0.490
2nd	7306	79-88	214.3	645.8	105.1	195.9	-0.0001	-0.3270	-0.0327	303.2	30.3	0					
3rd	10958	89-98	203.0	626.1	92.2	197.4	-0.0001	-0.2660	-0.0266	288.8	28.9	0					
4th	14611	99-08	217.7	698.9	88.5	179.3	0.0000	-0.0040	-0.0004	270.4	27.0	0					
<5th	16345	09-13	107.7	336.5	46.3	95.6	0.0000	-0.0410	-0.0086	144.1	30.3	0					
Sim10 VV	/-ET-2																

			decadal sum	decadal sum	decadal sum	decadal sum	avg. daily bottom		average annual								
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal					Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)	precip (cm/year)	Runoff (cm)	Sim#	Date E	T Thick & K	CB Thick & K	Balance (%) N
1st	3653	79-88	214.3	645.8	106.4	201.9	-0.0039	-14.4110	-1.4411	303.2	30.3	0	Sim10	10/22/14 3	6" - VV-ET-2; Corrected	6" - EB-ET-2; Corrected	0.429
2nd	7306	79-88	214.3	645.8	102.3	199.2	0.0000	-0.0450	-0.0045	303.2	30.3	0					
3rd	10958	89-98	203.0	626.1	89.0	201.1	0.0000	-0.0440	-0.0044	288.8	28.9	0					
4th	14611	99-08	217.7	698.9	85.2	182.9	0.0000	-0.0020	-0.0002	270.4	27.0	0					
<5th	16345	09-13	107.7	336.5	44.9	97.3	0.0000	-0.0030	-0.0006	144.1	30.3	0					

Sim11 VV-ET-1

Sim:	11 VV-ET	-1																		
				decadal sum	decadal sun	n decadal sum	decadal sum	avg. daily bottom		average annual										
				pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal						Water	
dec	ade d	days y	ear	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm) precip (cm/year)	Runoff (cm)	Sim#	Date	ET Thick	& K	CB Thick & K	Balance (%) I
1	st 3	3653 79	9-88	214.3	645.1	111.0	201.5	-0.0036	-13.3220	-1.3322	302.5	30.2	0.53859	Sim11	10/23/	14 36" - VV-	ET-1; Corrected	6" - EB-ET-2; UnCorrected	0.340	١
2r	nd 7	7306 79	9-88	214.3	645.1	102.4	199.1	0.0000	-0.0020	-0.0002	302.5	30.3	0.52401							
31	rd 10	0958 89	9-98	203.0	626.1	88.2	202.1	0.0000	-0.0020	-0.0002	288.9	28.9	0.53859							
41	th 14	4611 99	9-08	217.7	698.9	85.5	183.1	0.0000	-0.0020	-0.0002	270.4	27.0	0.52401							
<5	5th 10	6345 0	9-13	107.7	336.5	45.5	97.1	0.0000	-0.0010	-0.0002	144.1	30.3	0.53869							
Sim:	12 WB Bo	orrow-1																		
				docodol cum	decodel cum			ava daily hattam		average annual										

Sim12 W	<mark>B Borrow-</mark> 1	1	decadal sum	decadal sum	decadal sum	decadal sum	avg. daily bottom		average annual				•			
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal				Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)	precip (cm/year)	Runoff (cm) Sim#	Date ET Thick & K	CB Thick & K	Balance (%)
1st	3653	79-88	214.3	645.8	112.8	197.1	-0.0049	-17.7950	-1.7795	303.2	30.3	0	Sim12	10/22/14 36" - WB Borrow 1; Corrected	6" - EB-ET-2; Corrected	0.318
2nd	7306	79-88	214.3	645.8	107.1	194.9	0.0000	-0.0030	-0.0003	303.2	30.3	0				
3rd	10958	89-98	203.0	626.1	93.2	197.2	0.0000	-0.0030	-0.0003	288.8	28.9	0				
4th	14611	99-08	217.7	698.9	89.9	178.8	0.0000	0.0000	0.0000	270.4	27.0	0				
<5th	16345	09-13	107.6	336.5	47.7	95.1	0.0000	0.0000	0.0000	144.1	30.3	0				
Sim23 W	B Borrow-1	1 (uncorrect	ted K for Cap Bro	•	I		ave, daily bottom		average annual							

			decadal sum decadal sum decadal sum avg. daily bottom						average annual								
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal					Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)	precip (cm/year)	Runoff (cm)	Sim#	Date	ET Thick & K	CB Thick & K	Balance (%)
1st	3653	79-88	214.3	645.8	112.6	197.0	-0.0049	-18.0590	-1.8059	303.2	30.3	0	Sim23	10/22/1	4 36" - WB Borrow 1; Corrected	6" - EB-ET-2; Uncorrected	0.316 9
2nd	7306	79-88	214.3	645.8	107.1	194.9	0.0000	-0.0030	-0.0003	303.2	30.3	0					
3rd	10958	89-98	203.0	626.1	93.2	197.2	0.0000	-0.0040	-0.0004	288.9	28.9	0					
4th	14611	99-08	217.7	698.9	89.9	178.8	0.0000	-0.0030	-0.0003	270.4	27.0	0					
<5th	16345	09-13	107.6	336.5	47.7	95.1	0.0000	-0.0010	-0.0002	144.1	30.3	0					
Sim13 WE	Stockpile	-1															

Sim13 WB Stocknile-1	
Sinits wb Stockpile-1	Sim13 WB Stockpile-1

			decadal sum	decadal sum	n decadal sum	n decadal sum	avg. daily bottom		average annual								
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal					Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)	precip (cm/year)	Runoff (cm)	Sim#	Date	ET Thick & K	CB Thick & K	Balance (%)
1st	3653	79-88	214.3	645.8	109.6	199.9	-0.0048	-17.5460	-1.7546	303.2	30.3	0	Sim13	10/22/	14 36" - WB Stockpile-1; Corrected	6" - EB-ET-2; Corrected	0.388
2nd	7306	79-88	214.3	645.8	104.4	197.3	0.0000	-0.0110	-0.0011	303.2	30.3	0					
3rd	10958	89-98	203.0	626.1	91.1	199.1	0.0000	-0.0170	-0.0017	288.8	28.9	0					
4th	14611	99-08	217.7	698.8	87.4	181.0	0.0000	0.0000	0.0000	270.4	27.0	0					
<5th	16345	09-13	107.6	336.6	46.2	96.2	0.0000	0.0000	0.0000	144.1	30.3	0					

Sim24 WB Stockpile-1 (uncorrected K for Cap. Break)

			decadal sum	decadal sum	decadal sum	decadal sum	avg. daily bottom		average annual								
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal					Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)	precip (cm/year)	Runoff (cm)	Sim#	Date	ET Thick & K	CB Thick & K	Balance (%) No
1st	3653	79-88	214.3	645.8	109.4	199.8	-0.0049	-17.9180	-1.7918	303.2	30.3	0	Sim24	10/22/1	4 36" - WB Stockpile-1; Corrected	6" - EB-ET-2; Uncorrected	0.389 Sar
2nd	7306	79-88	214.3	645.8	104.4	197.3	0.0000	-0.0140	-0.0014	303.2	30.3	0					
3rd	10958	89-98	203.0	626.1	91.1	199.1	0.0000	-0.0210	-0.0021	288.8	28.9	0					
4th	14611	99-08	217.7	698.8	87.4	181.0	0.0000	-0.0040	-0.0004	270.4	27.0	0					
<5th	16345	09-13	107.6	336.6	46.2	96.2	0.0000	-0.0010	-0.0002	144.1	30.3	0					

Sim14 WB Stockpile-2

			decadal sum	decadal sum	decadal sum	decadal sum	avg. daily bottom		average annual							
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal				Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)) precip (cm/year)	Runoff (cm)	Sim#	Date ET Thick & K	CB Thick & K	Balance (%) No
1st	3653	79-88	214.3	645.8	114.2	193.0	-0.0051	-18.4720	-1.8472	303.2	30.3	0	Sim14	10/22/14 36" - WB Stockpile-2; Corrected	6" - EB-ET-2; Corrected	0.379
2nd	7306	79-88	214.3	645.8	110.5	191.3	0.0000	-0.0220	-0.0022	303.2	30.3	0				

Notes

Notes

Notes

Would not converge with water content & pressure head tolerance at 0.001 & 0.1 respecti

Notes

Notes

Same as Sim12 but with uncorrected K for CB.

Notes

Notes

Same as Sim13 but with uncorrected K for CB.

Notes

3rd	10958	89-98	203.0	626.1	97.0	193.3	0.0000	-0.0520	-0.0052	288.8	28.9	0
4th	14611	99-08	217.7	698.8	93.4	175.1	0.0000	-0.0030	-0.0003	270.4	27.0	0
<5th	16345	09-13	107.6	336.6	49.3	93.3	0.0000	0.0000	0.0000	144.1	30.3	0

Sim25 W	B Stockpile	-2 (uncorre	ected K for Cap. I	Break)													
			decadal sum	decadal sum	n decadal sum	decadal sum	avg. daily bottom		average annual								
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal					Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm) precip (cm/year)	Runoff (cm)	Sim#	Date	ET Thick & K	CB Thick & K	Balance (%) N
1st	3653	79-88	214.3	645.8	113.9	193.0	-0.0051	-18.7450	-1.8745	303.2	30.3	0	Sim25	10/22	/14 36" - WB Stockpile-2; Corrected	6" - EB-ET-2; Uncorrected	0.382 S
2nd	7306	79-88	214.3	645.8	110.5	191.3	0.0000	-0.0280	-0.0028	303.2	30.3	0					
3rd	10958	89-98	203.0	626.1	97.0	193.3	0.0000	-0.0660	-0.0066	288.8	28.9	0					
4th	14611	99-08	217.7	698.8	93.4	175.1	0.0000	-0.0030	-0.0003	270.4	27.0	0					
<5th	16345	09-13	107.6	336.6	49.3	93.3	0.0000	-0.0020	-0.0004	144.1	30.3	0					

Sim15 VV-L Comp 0-10

			decadal sum	decadal sum	decadal sum	decadal sum	avg. daily bottom		average annual							
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal				Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)) precip (cm/year)	Runoff (cm)	Sim#	Date ET Thick & K	CB Thick & K	Balance (%) N
1st	3653	79-88	214.3	645.8	104.3	206.0	-0.0043	-15.5410	-1.5541	303.2	30.3	0	Sim15	10/22/14 36" - VV-L Comp 0-10; Corrected	6" - EB-ET-2; Corrected	0.431
2nd	7306	79-88	214.3	645.8	99.6	201.9	0.0000	-0.0610	-0.0061	303.2	30.3	0				
3rd	10958	89-98	203.0	626.1	86.7	203.1	0.0000	-0.0510	-0.0051	288.8	28.9	0				
4th	14611	99-08	217.7	698.9	82.9	185.2	0.0000	-0.0030	-0.0003	270.4	27.0	0				
<5th	16345	09-13	107.7	336.5	43.6	98.4	0.0000	-0.0070	-0.0015	144.1	30.3	0				

Sim16 VV-L Comp 11-15

				decadal sum	decadal sum	decadal sum	decadal sum	avg. daily bottom		average annual								
				pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal					Water
de	cade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)) precip (cm/year)	Runoff (cm)	Sim# Date	ET	Thick & K	CB Thick & K	Balance (%) N
	1st	3653	79-88	214.3	645.8	108.9	198.0	-0.0051	-18.5130	-1.8513	303.2	30.3	0	Sim16 10	/22/14 36	" - VV-L Comp 11-15; Corrected	6" - EB-ET-2; Corrected	0.472
2	2nd	7306	79-88	214.3	645.8	106.0	195.2	-0.0001	-0.2300	-0.0230	303.2	30.3	0					
:	3rd	10958	89-98	203.0	626.1	93.1	196.6	-0.0001	-0.2020	-0.0202	288.8	28.9	0					
	4th	14611	99-08	217.7	698.9	89.2	178.6	0.0000	-0.0030	-0.0003	270.4	27.0	0					
	:5th	16345	09-13	107.7	336.5	46.8	95.2	0.0000	-0.0240	-0.0051	144.1	30.3	0					
Sin	n17 VV-	L Comp 1	6-20															

Sim17 VV-L Comp 16-20

Sim17 V	V-L Comp 1	6-20										~				
			decadal sum	decadal sun	n decadal sum	decadal sum	avg. daily bottom		average annual							
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal				Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm) precip (cm/year)	Runoff (cm)	Sim#	Date ET Thick & K	CB Thick & K	Balance (%)
1st	3653	79-88	214.3	645.8	104.6	206.3	-0.0047	-17.2050	-1.7205	303.2	30.3	0	Sim17	10/22/14 36" - VV-L Comp 16-20; Corrected	6" - EB-ET-2; Corrected	0.395
2nd	7306	79-88	214.3	645.8	99.1	202.6	0.0000	-0.0220	-0.0022	303.2	30.3	0				
3rd	10958	89-98	203.0	626.1	86.0	204.0	0.0000	-0.0200	-0.0020	288.8	28.9	0				
4th	14611	99-08	217.7	698.9	82.2	186.1	0.0000	-0.0010	-0.0001	270.4	27.0	0				
<5th	16345	09-13	107.6	336.5	43.4	98.8	0.0000	-0.0010	-0.0002	144.1	30.3	0				
Sim18 V	V-L Comp 2	1-30														

Sim18 VV-L Comp 21-30

			decadal sum	decadal sum	n decadal sum	n decadal sum	avg. daily bottom		average annual								
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annu	al Decad	al				Water
decade	days	year	(cm)	(cm)	transp. (cm)) (cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm	i) precip (cm/yea	ar) Runoff (m) Sim#	Date	ET Thick & K	CB Thick & K	Balance (%)
1st	3653	79-88	214.3	645.8	106.6	204.8	-0.0046	-16.7980	-1.6798	303.2	30.3	0	Sim18	10/22	/14 36" - VV-L Comp 21-30; Corrected	6" - EB-ET-2; Corrected	0.369
2nd	7306	79-88	214.3	645.8	100.4	201.5	0.0000	-0.0070	-0.0007	303.2	30.3	0					
3rd	10958	89-98	203.0	626.1	87.0	203.2	0.0000	-0.0080	-0.0008	288.8	28.9	0					
4th	14611	99-08	217.7	698.9	83.4	185.0	0.0000	0.0000	0.0000	270.4	27.0	0					
<5th	16345	09-13	107.7	336.5	44.2	98.3	0.0000	-0.0010	-0.0002	144.1	30.3	0					
<mark>Sim 19 V</mark>	V-L Comp 3	1+															
			decadal sum	decadal sum	n decadal sum	n decadal sum	avg. daily bottom		average annual								

<mark>Sim 19 V</mark>	<mark>V-L Comp 3</mark>	1+	decadal sum	decadal sum	n decadal sum	decadal sum	avg. daily bottom		average annual								
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal					Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)	precip (cm/year)	Runoff (cm)	Sim#	Date	ET Thick & K	CB Thick & K	Balance (%) N
1st	3653	79-88	214.3	645.8	104.4	212.1	-0.0043	-15.7130	-1.5713	303.2	30.3	0	Sim19	10/22,	14 36" - VV-L Comp 31+; Corrected	6" - EB-ET-2; Corrected	0.285
2nd	7306	79-88	214.3	645.8	94.0	208.2	0.0000	-0.0020	-0.0002	303.2	30.3	0					
3rd	10958	89-98	203.0	626.1	80.3	210.0	0.0000	-0.0020	-0.0002	288.8	28.9	0					
4th	14611	99-08	217.7	698.9	77.3	191.5	0.0000	-0.0020	-0.0002	270.4	27.0	0					
<5th	16345	09-13	107.7	336.5	41.2	101.4	0.0000	-0.0010	-0.0002	144.1	30.3	0					

Sim20 VV	-L Comp T	P-10															
			decadal sum	decadal sun	n decadal sum	decadal sum	avg. daily bottom		average annual								
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal					Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm) precip (cm/year)	Runoff (cm)	Sim#	Date	ET Thick & K	CB Thick & K	Balance (%) No
1st	3653	79-88	214.3	645.8	112.0	192.8	-0.0050	-18.2410	-1.8241	303.2	30.3	0	Sim20	10/2	2/14 36" - VV-L Comp TP-10; Corrected	6" - EB-ET-2; Corrected	0.476
2nd	7306	79-88	214.3	645.8	109.9	191.1	-0.0001	-0.4040	-0.0404	303.2	30.3	0					
3rd	10958	89-98	203.0	626.1	96.9	192.8	-0.0001	-0.3750	-0.0375	288.9	28.9	0					
4th	14611	99-08	217.7	698.8	93.2	174.8	0.0000	-0.0030	-0.0003	270.3	27.0	0					
<5th	16345	09-13	107.7	336.5	48.6	93.2	0.0000	-0.0240	-0.0051	144.1	30.3	0					

Sim21	VV-L Comp	0 TP-12														
			decadal sum	decadal sun	n decadal sun	n decadal sum	avg. daily bottom		average annual							
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal				Water
decade	e days	year	(cm)	(cm)	transp. (cm) (cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)) precip (cm/year)	Runoff (cm)	Sim# Date	ET Thick & K	CB Thick & K	Balance (%) Not

Notes

Same as Sim14 but with uncorrected K for CB.

Notes

Notes

Notes

Notes

Notes

Notes

Notes

1st	3653	79-88	214.3	645.8	107.7	203.5	-0.0042	-15.3380	-1.5338	303.2	30.3	0	Sim21	10/22/14 36" - VV-L Comp TP-12; Corrected 6" - EB-ET-2; Corrected	0.370
2nd	7306	79-88	214.3	645.8	101.6	200.1	0.0000	-0.0100	-0.0010	303.2	30.3	0			
3rd	10958	89-98	203.0	626.1	88.5	201.8	0.0000	-0.0120	-0.0012	288.8	28.9	0			
4th	14611	99-08	217.7	698.9	84.8	183.7	0.0000	-0.0020	-0.0002	270.4	27.0	0			
<5th	16345	09-13	107.7	336.5	44.8	97.6	0.0000	-0.0010	-0.0002	144.1	30.3	0			

Sim22 VV-L Comp TP-13

			decadal sum	decadal sum	decadal sum	decadal sum	avg. daily bottom		average annual							
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal				Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm)) precip (cm/year)	Runoff (cm)	Sim#	Date ET Thick & K	CB Thick & K	Balance (%)
1st	3653	79-88	214.3	645.8	105.0	207.6	-0.0045	-16.5740	-1.6574	303.2	30.3	0	Sim22	10/22/14 36" - VV-L Comp TP-13; Corrected	6" - EB-ET-2; Corrected	0.348
2nd	7306	79-88	214.3	645.8	97.9	204.0	0.0000	-0.0050	-0.0005	303.2	30.3	0				
3rd	10958	89-98	203.0	626.1	84.6	205.7	0.0000	-0.0040	-0.0004	288.8	28.9	0				
4th	14611	99-08	217.7	698.9	81.0	187.5	0.0000	0.0000	0.0000	270.4	27.0	0				
<5th	16345	09-13	107.7	336.5	43.0	99.5	0.0000	-0.0010	-0.0002	144.1	30.3	0				

SIM26 SENSITIVITY RUN - CAPILLARY BREAK VALUES USED FOR BOTH ET LAYER AND CAP BREAK FULL PROFILE THICKNESS																
			decadal sum	decadal sun	n decadal sum	n decadal sum	avg. daily bottom		average annual							
			pot. Transp.	pot. Evap	actual	actual evap.	percolation rate	Total decadal bottom	bottom percoloation	decadal	average annual	Decadal				Water
decade	days	year	(cm)	(cm)	transp. (cm)	(cm)	(cm/day)	percolation (cm)	rate (cm/year)	precip. (cm) precip (cm/year)	Runoff (cm) S	im#	Date ET Thick & K	CB Thick & K	Balance (%) N
1st	3653	79-88	214.3	645.8	96.9	201.7	-0.0048	-17.6640	-1.7664	303.2	30.3	0 <mark>S</mark>	im26	10/22/14 36" - EB-ET-2; UnCorrected	6" - EB-ET-2; UnCorrected	0.340 Ti
2nd	7306	79-88	214.3	645.8	96.7	200.3	-0.0009	-3.4670	-0.3467	303.2	30.3	0				
3rd	10958	89-98	203.0	626.1	88.6	197.4	-0.0007	-2.5570	-0.2557	288.9	28.9	0				
4th	14611	99-08	217.7	698.8	90.3	176.3	-0.0001	-0.5300	-0.0530	270.4	27.0	0				
<5th	16345	09-13	107.7	336.6	45.0	96.2	-0.0006	-1.1130	-0.2343	144.1	30.3	0				

Note: last "period" only represents 4.75 years (09 to 2013); others are decades

Notes

Notes Trial run - used soil values for Cap. Break for entire 42" profile.

Appendix C Public Comments Received on the 2015/2016 Interim Measures Work Plan with U.S. Environmental Protection Agency Responses and Conditional Letter of Approval

To be inserted.