

Table 1-1. Summary of Supporting Investigations and Reports

Corrective Measures Study Report, Former ASARCO East Helena Facility

Timetrame of					
Relevant					
Activity/			Entity		Reference
Investigation	Report Title	Author(s)	Responsible	Report Year	Location
June 1984	Remedial Investigation of Soils, Vegetation, and Livestock	CH2M HILL	USEPA	1987	Section 3.2
Nov 1984 -	Process Pond Remedial Investigation/Feasibility Study	Hydrometrics and	ASARCO	1989	Section 3.2
May 1988	ö , , ,	, Hunter/ESE			
Fall 1984 -	Comprehensive Remedial Investigation/Feasibility Study for the Asarco	Hydrometrics	ASARCO	1990	Section 3.2
Spring 1988	East Helena Smelter	,			
1998-1999	Current Conditions/Release Assessment, East Helena Facility	Hydrometrics	ASARCO	1999	Section 3.2
1984 - 2002	Phase I RCRA Facility Investigation Site Characterization Report - East	Hydrometrics	ASARCO	2005	Section 3.2
1904 - 2002		riyurometrics	AJANCO	2005	Section 5.2
2003	Helena Facility Supplemental Ecological Risk Assessment for the East Helena Smelter Site,	LICEDA	USEPA	2005	Section 2.3.3
2003		UJLFA	USLFA	2005	Section 2.5.5
2009	Montana U.S. East Helena Superfund Site, Operable Unit No. 2, Residential Soils and		USEPA	2009	Sections 1.2,
2009		USEPA	USEPA	2009	,
	Undeveloped Lands, Final Record of Decision				2.3.1, 2.3.3,
2010		CCUMatan	Custadial	2014	3.2.5, 6
2010	Phase II RCRA Facility Investigation, East Helena Facility	GSI Water	Custodial	2014	Sections 3.2
2010	Pasalina Faalagiaal Disk Assassments Farmer ASADCO Fast Halana Fasility	Solutions, Inc.	Trust	2011	and 3.3.5
2010	Baseline Ecological Risk Assessment: Former ASARCO East Helena Facility,	Gradient	Custodial	2011	Section 3.4.2
2011	East Helena, Montana	CCUMatan	Trust	2011	<u> </u>
2011	Preliminary Evaluation of South Plant Hydraulic Control at the East Helena		Custodial	2011	Section 3.3.2
2014 2012	Smelter Facility	Solutions, Inc.	Trust	2012	c
2011-2012	Draft Upper Lake Drawdown Test Technical Memorandum	Hydrometrics, Inc.		2012	Sections
			Trust		3.3.2 and 5.2
2012	Former ASARCO East Helena Facility Interim Measures Work Plan -	CH2M HILL	Custodial	2012	Section 5
	Conceptual Overview of Proposed Interim Measures and Details of 2012		Trust		
	Activities				
2013	Former ASARCO East Helena Facility Interim Measures Work Plan – 2013	CH2M HILL	Custodial	2013	Section 5.3
			Trust		
2014	Former ASARCO East Helena Facility Interim Measures Work Plan – 2014	CH2M HILL	Custodial	2014	Section 5.3
			Trust		
2014	2014 Supplemental Contaminant Source Area Investigation at the Former	Hydrometrics, Inc.		2015	Section 3.3.5
	East Helena Smelter		Trust		
2014	Groundwater Flow Model Calibration Refinement, Transient Verification,	NewFields	Custodial	2014	Section 5
	and Interim Measures Support, East Helena Site		Trust		
2014-2015	Groundwater Remedy Evaluation and Recommendations for the Former	CH2M HILL	Custodial	2016	Sections
	East Helena Smelter	011014	Trust		3.3.5 and 5
2015	Former ASARCO East Helena Facility Corrective Measures Study Work Plan	CH2M	Custodial	2015	Sections
			Trust		3.3.4, 3.3.5,
					and 3.4.2
2015	_	Hydrometrics, Inc.		2015	Section 3.3.1
	East Helena Facility		Trust		and 5
2015	Final Fate and Transport Model Design and Calibration, East Helena Site	NewFields	Custodial	2015	Section 5
			Trust		
2015	Basis of Design Report for the ET Cover System, Interim Cover System 2,	CH2M HILL	Custodial	2015	Section 5.3
	and Demolition Phase 3		Trust		
2015	2015 Supplemental Contaminant Source Area Investigation at the Former	Hydrometrics, Inc.		2016	Sections
	East Helena Smelter		Trust		3.3.5 and 5
2015-2016	Former ASARCO East Helena Facility Interim Measures Work Plan – 2015	CH2M HILL	Custodial	2015	Section 5.3
	and 2016		Trust		
2015-2016	East Helena Facility Supplemental RFI Sampling and Analysis Plan	CH2M HILL	Custodial	2015	Section 3.3.4
			Trust		
2015-2016	Addendum to Former ASARCO East Helena Facility Interim Measures	CH2M HILL	Custodial	2016	Section 5.3
	Work Plan – 2015 and 2016		Trust		
January -	2016 Speiss/Dross Slurry Wall Evaluation Technical Memorandum	Hydrometrics, Inc.	Custodial	2016	Section 3.3.5
March 2016			Trust		
2016	Addendum to East Helena Facility Supplemental RFI Sampling and Analysis	CH2M	Custodial	2016	Section 3.3.4
			Trust		
	Plan				
2016	Plan 2016 Groundwater and Surface Water Corrective Action Monitoring Plan,	Hydrometrics, Inc.		2016	Section 3.3.1
2016	2016 Groundwater and Surface Water Corrective Action Monitoring Plan, East Helena Facility	Hydrometrics, Inc.		2016	Section 3.3.1
2016 2016	2016 Groundwater and Surface Water Corrective Action Monitoring Plan,	Hydrometrics, Inc. Hydrometrics, Inc.	Custodial Trust	2016 2016	Section 3.3.1 Section 3.3.6

Notes:

ASARCO = American Smelting and Refining Company

RCRA = Resource Conservation and Recovery Act

RFI = RCRA Facility Investigation

USEPA = U.S. Environmental Protection Agency

Table 2-1. CMS Parcels - Media Cleanup Standards for Primary Inorganic Constituents in Soil

Media	Constituent of Potential Concern	Land Use	Cleanup Standard (µg/L groundwater, mg/kg soil) ^d	Basis of Standard	Applications for Standard
Groundwater	Arsenic	All	0.010	MCL	Exceedance of MCS indicates need for remedial action and will be
	Cadmium		0.005		considered in identification of areal extent of institutional controls (Controlled Groundwater Area)
	Selenium		0.05		(controlled Groundwater Area)
Surface Soil L	Lead	Ecological	650	Concentration established to be protective of ecological receptors (passerines) at other MT remediation sites ^a	Will be applied as a design criterion for IM and final remedy construction (final surface site work associated with Prickly Pear Creek and Tito Park excavation, surface layer of ET Cover System, etc.)
		Residential	400	USEPA RSL ^b	Establishes concentration threshold for remedy implementation on
		Industrial - Commercial	800		undeveloped properties when land use changes
		Recreational	3,245	OU-2 ROD	_
	Arsenic	Residential	35	Hegeler Zinc ROD ^c	
		Industrial - Commercial	572	OU-2 ROD	
		Recreational	794	OU-2 ROD	
Soil at Depth	Arsenic		40	(MDEQ, 2013)	Establishes extent of remedial action required to prevent
	Cadmium	Cadmium		USEPA MCL-based SSL ^b (concentration needed to achieve MCLs in groundwater)	groundwater contact with contaminated soil and to control infiltration
	Selenium		0.26	USEPA MCL-based SSL ^b (concentration needed to achieve MCLs in groundwater)	

Corrective Measures Study Report, Former ASARCO East Helena Facility

^a Recommended based on its consistency with action levels developed at other similar smelter/mining sites: OU2 Record of Decision (ROD) East Helena, MT; Anaconda Smelter Superfund Site, Anaconda, MT; Bunker Hill Superfund Site, Coeur d'Alene, ID; and Tri-State Mining District (Oklahoma, Kansas, and Missouri) Superfund Site.

^b USEPA June 2015 RSL or MCL-based soil screening level (SSL) where indicated

^c The arsenic cleanup level is recommended based on risk-based concentrations currently being approved by USEPA at former smelter sites and similar facilities across the country. The Hegeler Zinc ROD is cited as an example of current practice (USEPA, 2014).

^d Media cleanup standards for CMS Parcels as presented in the CMS Workplan (EPA Approval, October 22, 2015); OU-2 ROD standards will be applied to the Undeveloped Lands. Abbreviations:

- μg/L = micrograms per liter
- ET = evapotranspiration
- IM = interim measure
- MCL = maximum contaminant level
- MDEQ = Montana Department of Environmental Quality
- mg/kg = milligrams per kilogram
- OU2 ROD = Record of Decision for Operable Unit 2
- RSL = regional screening level

Table 3-1. Summary of Interim Measures Completed by ASARCO

Corrective Measures Stud	v Renort	Former ASARCO	Fast Helena Facility
	γ περυιί,	I UITICI AJANCO	

Approximate Dates	Summary of Interim Measure
Sediment and	Surface Water (Diversions/Modifications/Management):
1996-1997	Surface water: 1996: Switch to use of water from Upper Lake rather than Lower Lake for dust control 1997: Wilson Ditch rerouted around plant site 1997: Improve plant stormwater system
1986-1991	Thornock Lake Removal – key items as follows: 1986-1987: soil excavated from Thornock Lake area. 1986: Thornock Lake replaced with 93,000 gallon steel tank 1991: 407 CY of soil excavated from former Thornock Lake and smelted
1989-1996	Lower Lake Dredging/Water Treatment Plant – key items as follows: 1989: Bench-scale testing for the treatment of Lower Lake water 1990: Discontinue regular discharge of plant water to Lower Lake (occasional discharge from tanks when needed). 1993: Begin construction of high-density sludge water treatment plant 1993: large-scale dredging and dewatering pilot testing of Lower Lake sediments 1994: HDS water-treatment plant comes on-line; discharges to Lower Lake cease 1994-1996: dredging of Lower Lake sediments 1996: MPDES permit issued for HDS plant discharge
Surface Soil an	nd Demolition of the Ore Storage Area:
1989	Shallow soil removed and stored in Lower Ore Storage Area, deeper soil consolidated in southeast corner of the storage yard
1997	Geomembrane cover is installed over stockpiled Lower Lake sediments as a temporary cover
2000	Construct Phase I CAMU for waste management
2009	Demolished process unit smelter stacks
Former Speiss	Settling Pond and Granulating Pit:
1988	Speiss Pond lined with high-density polyethylene
1989	Replace Speiss pond with settling tank and secondary leak detection
1989	2,500 CY soil excavated to 20 feet under former Speiss Pond
1991	Discontinue water granulation of Speiss
1992	Demolish Speiss pond and excavate soil
1993	Cap former Speiss pond area with concrete.
1995	Excavate and cap (concrete) former Speiss pit to 17-feet depth (235 CY removed)
2006-2007	Construct slurry wall and cap around Speiss-dross plant subsurface soil.
Acid Plant Wat	ter:
1991	Eliminated wooden trough fluid transport system and settling dumpsters, reducing water losses.
1992	Complete water reclamation facility and discontinue use of sediment drying pad
1993	Demolish and excavate Acid plant settling pond
1997	Re-brick acid plant scrubber sump and install secondary containment
Acid Plant Sed	iment Drying Area:
1991	Remove Acid plant sediments from former sediment drying pad
1993	Seal Former acid plant sediment drying pad
2001	Soil and debris stockpiles from remedial actions placed in the CAMU 1
2006	Construct slurry wall and cap around APSD subsurface soil

Table 3-2. Summary of Remediation Waste Generation and Management During Interim Measure Implementation

			Waste Disposal					
Remedial Activity	Waste Source Area	Waste Type(s)	Dates of Removal	Location	Waste Quantities			
ASARCO-Implemented Inter	rim Measures							
Lower Lake Sediment Dredging	Lower Lake	Sediment	1994-1996	Temporarily stockpiled in Lower Ore Storage Area. Placed in CAMU 1 in 2001.	27,000 cy			
				Smelted	4,000 cy			
Thornock Lake Removal	Thornock Lake	Sediment	1986-1987	Smelted	Not Provided			
	Thornock Lake	Sediment	1991	Smelted	407 cy			
		Slag	1991	Placed on slag pile	185 cy			
Speiss/Dross Area Removal	Speiss Pond	Soil	1988	Smelted	2,500 cy			
	Speiss Pond	Soil	1992	Temporarily stockpiled in Lower Ore Storage Area. Placed in CAMU 1 in	235 су			
	Speiss Pond	Soil	1995	2001. Temporarily stockpiled in Lower Ore Storage Area. Placed in CAMU 1 in 2001.	250 cy			
Acid Plant Removal	Acid Plant Settling Pond	Soil	1993	Temporarily stockpiled in Lower Ore Storage Area. Placed in CAMU 1 in 2001.	2,200 cy			
	Former Sediment Drying Pad	Sediment	1991	Smelted	Not Provided			
	Original Sediment Drying Pad	Soil/Sediment	1993	Temporarily stockpiled in Lower Ore Storage Area. Placed in CAMU 1 in 2001.	Not Provided			
Stockpile Removal	Lower Ore Storage Area, Shew Ridge, Lower Lake Sediment Stockpile, and Tito Park Area Stockpiles	Soil/Sediment/Debris	2001	CAMU 1	110,000 cy			
2008 Facility Demolition	Site Structures (Process and Nonprocess) ^a	Building Debris (wood, brick, insulation, concrete, pipe, other cleanup waste)	2008	CAMU 2	37,471 cy			

Table 3-2. Summary of Remediation Waste Generation and Management During Interim Measure Implementation

Corrective Measures Study Report, Former ASARCO East Helena Facility

				Waste Disposal					
Remedial Activity	Waste Source Area	Waste Type(s)	Dates of Removal	Location	Waste Quantities				
2009 Facility Demolition	Site Structures (Process and Nonprocess) ^b	Building Debris (wood, brick, insulation, concrete, pipe, building cleaning, other cleanup waste) Yard Debris (railroad ties, roadway	2009	CAMU 2	18,565 cy				
Custodial Trust-Implemen	ted Interim Measures	sweepings)							
Phase 1 Demolition	Site Structures (Nonprocess) ^c	Metal	4/2013 - 7/2013	Offsite	2,176 tons				
Phase 2 Demolition	Site Structures (Nonprocess) ^d Site Structures (Nonprocess) ^e	Metal Building Debris (wood, brick, insulation, concrete, pipe) Yard Debris (dirt, fabrics, railroad ties, miscellaneous)	7/2013 - 10/2013 9/2013 - 10/2013	Offsite CAMU 2	1,249 tons 2,618 tons				
Tito Park Area Removal	Acid Plant Sediment Drying Area/ Tito Park Area	Slurry Wall Material, Speiss, Contaminated Soil, Sand, Rusted/Crushed Ore Barrels, Concrete	7/2014 - 8/2014	CAMU 2	30,270 cy				
	Tito Park Area	Lower Lake Sediments, Contaminated Soil, Other Soil	6/2014 - 9/2014	ET Cover West Subgrade	150,000 cy				
PPC Realignment	Upper Lake Marsh	Contaminated Marsh Sediments	9/2016 - 10/2016	ET Cover East Subgrade	21,000 cy				
Phase 3 Demolition	Site Structures (Process) ^c	Construction and Debris, Universal Wastes, Refrigerants	6/2015 - 8/2016	Offsite	1,400 tons				
	Speiss Disposal	Metal Speiss; Contaminated Soil	6/2015 -10/2016 7/2016 - 9/2016	Offsite ET Cover East Subgrade	756 tons 8,000 cy				
Acid Plant Removal	Acid Plant Settling Pond	Contaminated Soil; Concrete	4/2016 - 8/2016	ET Cover East Subgrade	20,000 cy				

^a Primary structures included: Acid Plant, Bag House, Bailey Building Stored Waste, Barnum Building Stored Waste, Ore Storage Stored Waste, Ringling Building, Spray Dryer, Blast Furnace Flue, Monier Flue

^b Primary structures included: Acid Dust Silo, Crushing Mill, Sample Mill, Hopto Pad, Breaking Floor/Highline, Ore Storage RR Track Area, Ore Storage Walls Demolition, 200-foot Stack, 400-foot Stack, 425-foot Stack, Ore Storage Cleaning, Ore Storage Baghouse Cleaning, Ore Storage Sump Cleaning, Crushing Mill Cleaning, Sample Mill Cleaning, Hopto Pad Cleaning, Bailey Building Cleaning, Cement Silo Cleaning, Coke Hopper Cleaning, Direct Smelt Building Cleaning, High Grade Cleaning, Scale House Cleaning, Water Treatment Plant Sump Cleaning, Sump Near Scale House Cleaning, Sump South of Barnum Cleaning, Debris Around Bailey Building Cleaning, Million-gallon-tank Cleaning

^c Primary structures included: Ore Storage and Handling, Barum and Bailey Buildings, Scales and Scalehouse

^d Primary structures included: Powerhouse, Warehouse, Welding Shops, DOES Building, Direct Smelt Building, Zinc Plant O₂ Building, Other miscellaneous structures and debris

^e Primary structures included: Engineering Building, Bathhouse Building, Stormwater Tanks; HDS Treatment; Transformer Pad Area; Power Building, etc. Notes:

cy = cubic yards; HDS = high-density sludge

Table 3-3. Former East Helena Smelter Groundwater Contaminant Source Inventory

General Source Area	Source #	Source Name	Primary COC As/Se	Description	Soil Conditions	Groundwater Conditions	Recommendations	
	1	Rail Corridor Soils	Se	Rail corridors adjacent to former ore storage building. SPLP leach samples showed 0.027 to 0.490 mg/L selenium. Leachability increased with depth while total concentrations decreased with depth.		Seasonal Se spikes up to 7 mg/L (DH-66), appear to	Although they cannot be ruled out due to high leach concentrations, surface soils seem an unlikely source of seasonal spikes in groundwater. Additional data to be collected as part of 2014 source characterization work. Should be addressed through capping.	
West Selenium Area	2	Selenium-Loaded Saturated Soils: impacted from Speiss- Se Dross Area Groundwater		Not a former process area. Downgradient of historic source areas (speiss/dross and/or acid plant). Selenium historically loaded onto saturated soils via groundwater transport, possibly precipitated or occluded within minerals former in aquifer matrix during mixing/neutralization of acid plant and speiss dross	Concentrations and leachability of Se in subsurface soils (both saturated and unsaturated) not well documented. Location estimated based on configuration of west selenium plume.	have been mitigated by SPHC. "Baseline" concentrations still 1-2 mg/L range, most recent concentrations 4-6 mg/L (2014). Well DH-66 highly correlated with water table variations and other parameters (SO ₄ , Cl), DH-8 less so (different mechanisms?). Groundwater saturated with respect to gypsum (CaSO ₄) and calcite (CaCO ₃). Low arsenic	Possible significant source of current selenium loading to groundwater. Evaluate further for possible mitigation. Additional subsurface data needed.	
	3	Selenium-Loaded Saturated Soils: Impacted from Acid Plant Area Groundwater	Se	impacted groundwater. May be released over time, with changing geochemical conditions. Process water in speiss/dross reportedly contained ~40 mg/L selenium, acid plant process water ~6 mg/L selenium. Well DH-21 in speiss/dross area reported about 7 mg/L in 1999 as part of plant water release investigation.	Concentrations and leachability of Se in subsurface soils	concentrations in this area. Possible secondary mineral cement source.	Possible significant source of current selenium loading to groundwater. Evaluate further for possible mitigation. Additional subsurface data may be needed.	
North Plant Source Area	4	North Plant Site Saturated Soils	As (Se?)	Not a former process area. Downgradient of historic source area (speiss/dross) and slurry wall, upgradient of PRB. Arsenic historically loaded onto saturated soils via groundwater transport from upgradient sources; may be released over time with changing geochemical conditions. Also some potential for Se release based on RFI2SB-20 results (leached 0.7 mg/L Se during adsorption tests) and recent gw trends at well DH-36 (As decrease/Se increase).	and soil borings. Deep (saturated) soil As concentrations highest at DH-13 (300-1400 mg/kg), DH- 17 (300-700 mg/kg). More recent data somewhat lower: Phase II RFI borings in area range from 25-432 mg/kg; lower on As plume periphery. As adsorption observed at RFI2SB-8 and -21. As leaching at RFI2SB-16	Downgradient of slurry wall, gw concentrations are 3- 12 mg/L range (SDMW-1, -2, -5, DH-13). 450' downgradient at DH-17 concentrations are 35 mg/L. DH-17 concentrations stable since 2002 but have recently decreased to minimum seen since 2002 (from 45 mg/L down to 31.5 mg/L). As(III) predominant at DH- 17, continuing downgradient to DH-64, alters to As (V) as plume crosses Highway 12.	Possible primary current source of arsenic loading to downgradient groundwater. Potential future source of selenium loading to groundwater if geochemical conditions change. Evaluate further for possible mitigation. Additional subsurface data needed.	
Slag Pile	5	Younger Unfumed Slag	As/Se	Slag not processed through zinc plant during periods prior to zinc plant construction (1930s) and following cessation of zinc plant operation (1982). Generally south end and "upper lift" of slag pile.	from Phase II RFI (SPLP) showed 0.009 to 0.130 mg/L As, 0.036 to 0.400 mg/L Se. RI/FS era slag leach and test basin samples showed 0.353 to 0.620 mg/L As in test basins and 0.31 mg/L As in bottle roll for unfumed slag. Fumed slag showed lower concentrations (0.0283 to 0.054 mg/L in test basins and 0.19 mg/L in bottle roll). Test basin K results were 54 to 74 mg/L for fumed slag, 1540 to 2650 mg/L for unfumed slag. Bottle roll K results were 3.9 mg/L for fumed and 22 mg/L for	highest near north and northwest portion of slag pile. Highest Se concentrations at well DH-56. Some Se (IV) contribution in this area. Very high K concentrations at DH-56 (400 mg/L). As about 1-2 mg/L and Se 0.4 to 1.0 mg/L in select wells, some wells lower. South of well DH	Large area and not well defined as a whole. Review of slag pile history (available analytical data, aerial photo and map review to determine placement of slag over time, field reconnaissance) recommended to evaluate potential areas of contaminant loading from slag; possible more detailed evaluation in future if warranted. Not a time critical source area relative to near-term remedial activities.	

Table 3-3. Former East Helena Smelter Groundwater Contaminant Source Inventory

General Source Area	Source #	Source Name	Primary COC As/Se	Description	Soil Conditions	Groundwater Conditions	Recommendations	
Former Thornock Lake	6	Former Thornock Lake Area Soils	As	Former process pond. Pond replaced with tank in 1986. Soils excavated in 1986-1987 and 1991.	Preremediation total As in soils as high as 120,000 mg/kg but quite variable. Post-excavation samples in 1991 showed total As 513 to 3055 mg/kg. SPLP As 0.22 to 3.8 mg/L. SPLP Se all <0.1 mg/L. Phase I RFI soil borings RFISB-1 and RFISB-2 showed relatively low total arsenic concentrations (<10 to 231 mg/kg, average of 32 mg/kg).	Groundwater at wells DH-57 in DH-58 in Thornock Lake area recently 1-2 mg/L arsenic, 0.01 to 0.05 mg/L selenium. Generally decreasing trends since plant shutdown.	Not associated with highest GW concentrations although some leachable arsenic probably remains in soils. Further consideration not warranted at this time given the other areas with much higher impacts to groundwater. May warrant further evaluation some time in the future depending on water quality trends and project developments.	
Former Speiss/Dross Area	7	Speiss Granulation Area	As/Se	Very high historic process water concentrations for both arsenic (3,000+ mg/L) and selenium (40+ mg/L). Historic area of highest groundwater impacts due to use of ponds, process water releases. Elevated groundwater pH (11-13). Encapsulated in slurry wall in 2007; slurry wall appears effective at limiting downgradient migration of contaminants (As at SDMW- 2 decrease of 50+mg/L to 10 mg/L since 2007).	concentrations unknown within wall. Phase I RFI soil borings RFISB-3 and RFISB-4 showed moderate arsenic soil concentrations (<10 to 777 mg/kg, average of 243	Groundwater arsenic as high as 750 mg/L in the past, selenium as high as 7 mg/L but very limited data (well DH-21). Current arsenic concentrations within slurry wall 80 to 100 mg/L. Groundwater yield within wall appears to be decreasing over time.	Groundwater quality generally improving in area. May warrant further evaluation in future depending on water quality trends within and outside of slurry wall, and long-term integrity of wall. Potential source areas outside of slurry wall should be evaluated as potential source to West Selenium Area groundwater plume. Not a time critical source.	
	8	Speiss Storage and Handling Area	As/Se	Outside storage bins and material handling area for speiss. Likely impacts from material spillage and water application. Partially encapsulated in slurry wall in 2007; slurry wall appears effective at limiting downgradient migration of contaminants. Portion outside (west) of slurry wall.	Limited soil data in this area. Well DH-38 soil samples showed 72 to 1906 mg/kg total arsenic. Concentrations increased from about 170 mg/kg just above water table to 700 mg/kg just below water table.	Arsenic concentrations up to 250 mg/L historically in groundwater at well DH-38. No recent water quality data from area.	Area outside slurry wall warrants further evaluation as potential source to West Selenium Plume area. Majority of high concentration soils within slurry wall, and limited downgradient migration of arsenic currently indicated. Long- term integrity of slurry wall should be evaluated.	
	9	Cottrell/Scrubber Blowdown Area	As/Se	Area of significant process water leaks during plant	Soils highly impacted by historic process water releases;		Historically significant source of arsenic loading to groundwater, but groundwater quality improving due to past	
Former Acid Plant Area	10	Acid Plant Settling Pond	As/Se	operations; very high process water concentrations (1,800 mg/L As; 5 mg/L Se; 200 mg/L Cd). Extensive remediation conducted in Acid Plant Area in late 1980s/early 90s. Contaminated soils remain at depth at location of former acid plant settling pond and possibly	highest concentration soils excavated in 1990s. Current concentrations up to 12,000 mg/kg arsenic at former settling pond area. Highest concentration soils recently desaturated by SPHC IM. High concentration soils are localized and located under high-density sludge	DH-19 up to 416 mg/L arsenic in groundwater in 1991. Arsenic concentrations have decreased from about 11.5 to 9 mg/L since 2011. Selenium decrease recently from 60 to 25 ppb. Recent improvements attributed to SPHC.	Warrant removal or other source control atter high-density	
	11	Original AP Sediment Drying Area	As/Se	other areas.	building.			
Monier Flue	12	Monier Flue Area Soils	Se	Soils beneath former Monier Flue, which was removed in 2008, are largely unsaturated. Potential contaminant mechanism was periodic washing out of flue with water and letting water infiltrate into ground. Soils sampled during demolition and during Phase II RFI.	Demolition soil samples up to 1,350 mg/kg selenium; highest document soil concentration. Phase II boring RFISB-6 up to 106 mg/kg at 2 to 5 feet; leached 0.28 mg/L. Very high cadmium (75,000 mg/kg), lead (53,000 mg/kg), copper (17,000 mg/kg). All concentrations decreased significantly below 5 feet bgs.	No data; aquifer very thin (2 to 0 feet thick).	Underlying soils dry down to clay layer in most areas; elevated selenium soils will be addressed through capping. No need to evaluate further.	

Table 3-3. Former East Helena Smelter Groundwater Contaminant Source Inventory

Corrective Measures Study Report, Former ASARCO East Helena Facility

General Source Area	Source #	Source Name	Primary COC As/Se	Description	Soil Conditions	Groundwater Conditions	Recommendations		
	13	13 Upper Ore Storage Area As/Se		Area used for storage of ore and other materials historically.					
South Plant	uth Plant14Former AP Sediment Drying AreaAselevated g concentration			NA draining of Lower Lake and removal of soils to 3910 fee part of TPA Source Removal/SPHC IM projects. Post-SPHC co		To be addressed through TPA Source Removal and SPHC IMs.			
	15	Lower Lake/Tito Park	As/Se	Lower Lake historically used as process pond, more recently as water treatment plant MPDES discharge point. Contaminated sediments dredged from lake in mid-1990s. Tito Park used as storage area for various materials throughout plant history. Materials removed to CAMU in early 2000s.					
Notes: General source areas are sh AP = Acid Plant Area	own on Fi	ı gure 3-7.	1		Recommended for additional evaluation Not recommended for additional evaluation				

AS/SE = arsenic/selenium

bgs = below ground surface

CAMU = Corrective Action Management Unit

COC = constituent of concern

mg/kg = milligrams per kilogram

mg/L = milligram per liter

NA = not applicable

SD = Speiss/Dross Area

SPCH IM = South Plant Hydraulic Control interim measure

SPLP = Synthetic Precipitation Leaching Procedure

Table 3-4. Overview of 2014 Source Area Investigation and Analyses Completed Corrective Measures Study Report Former ASARCO Fast Helena Facility

	Number of	Number of	Number of	
Source Area	Borings	Wells Completed	Soil Samples	Summary of Analyses
Nest Selenium	6	2	33	Soil leach testing
				Total metals (soil)
				Arsenic and selenium (groundwater)
				Mineralogical analysis
North Plant Arsenic	2	0	9	Soil leach testing
				Total metals (soil)
				Arsenic and selenium (groundwater)
				Mineralogical analysis

Leach Testing = synthetic precipitations leaching procedure and saturated paste analyses.

Table 3-5. Overview of 2015 Source Area Investigation and Analyses Completed

	Number of	Number of	Number of	
Source Area	Borings	Wells Completed	Soil Samples	Summary of Analyses
West Selenium	7	2	43	Soil leach testing
				Total Metals (soil)
				Arsenic and selenium (groundwater)
North Plant Arsenic	2	0	16	Total metals (soil)
				Batch adsorption testing
Acid Plant	4	2	23	Soil leach testing
				Total metals (soil)
				Arsenic and selenium (groundwater)
Speiss-Dross Area	2	1	11	Soil leach testing
				Total metals (soil)
				Arsenic and selenium (groundwater)

Notes:

Leach Testing = synthetic precipitations leaching procedure and saturated paste analyses.

Intact Shelby tube soil cores were collected for potential geotechnical analysis at seven locations, as follows:

- Five locations in the West Selenium source area

- One location in the former Acid Plant source area

- One location in the Speiss-Dross source area

			Total Conc	entrations in S	lag (mg/kg)						Slag Leacha	ate Concentration	ns (mg/L)				
							Phase I and II R	FI SPLP Samples				RI/FS S	lag Infiltratio	n Basins			
Slag Type	Statistic	Arsenic	Copper	Lead	Selenium	Zinc	Arsenic	Selenium	Arsenic	Copper	Lead	Selenium	Zinc	Potassium	Sodium	Sulfate	pH (s.u.)
	Minimum	34.1	75.7	<10	10	1600	0.099	0.036	NA	NA	NA	NA	NA	NA	NA	NA	NA
Unfumed Slag (pre- early 1940s deep lift) ^a	Maximum	3060	54300	41600	160	114000	0.099	0.036	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Average	622	3772	14334	70	58239	0.099	0.036	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Minimum	77	1900	<10	29	11119	0.009	0.059	0.353	0.043	0.021	NA	0.023	1950	2200	1200	9.48
Unfumed Slag (post- 1982 upper lift) ^b	Maximum	1840	23100	20300	325	149000	0.130	0.4	0.62	0.13	0.098	NA	0.10	2650	3890	11750	9.97
_	Average	755	7261	8453	132	101874	0.072	0.196	0.529	0.097	0.066	NA	0.05	2173	3198	7225	9.66
	Minimum	17	701	<10	<5	2080	0.028	NA	0.028	0.056	0.02	NA	0.788	54	45	480	6.16
Fumed Slag ^c	Maximum	377	5030	4425	14	28800	0.028	NA	0.054	0.28	0.045	NA	3.7	74	85	1450	7.77
	Average	90	1584	136	10	11718	0.028	NA	0.037	0.153	0.028	NA	2.65	65	70	1179	7.34

Table 3-6. Total and Leachate Concentrations (2001 - 2010) for Unfumed and Fumed Slag Corrective Measures Study Report, Former ASARCO East Helena Facility

Notes:

NA = not analyzed

^aOlder unfumed slag totals from DH-69, -69, -76. SPLP results from DH-76 (one sample).

^bYounger (upper lift) unfumed slag totals from DH-55, -74, -75, -76. SPLP results from DH-74 and DH-76 (three samples).

^cFumed slag totals from DH-55, -56, -65, -74, -75. SPLP results from DH-55 (one sample).

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

RFI = RCRA Facility Investigation

RI/FS = Remedial Investigation/Feasibility Study

stigation SPLP = synthetic precipitation leaching procedure

Sample Location	As	Pb	Sb	Ва	Cd	Cr	Со	Cu	Fe	Mn	Se	Ag	TI	v	Zn	Hg	Cr VI
			•••			•		Surface								8	
Parcel 2a - Sam	pled 1991	-2008															
ASP-1	. 64	547	-	-	14	-	-	-	-	-	-	-	-	-	-	-	-
ASP-2	59	661	-	-	19	-	-	-	-	-	-	-	-	-	-	-	-
ASP-3	81	1190	-	-	18	-	-	-	-	-	-	-	-	-	-	-	-
ASP-4	172	1941	-	-	37	-	-	-	-	-	-	-	-	-	-	-	-
ASP-5	158	1444	-	-	30	-	-	-	-	-	-	-	-	-	-	-	-
EH-66	19.7	-	< 5	134	3.2	11.9	< 5	24.3	12500	224	58.9	5.6	20.9	37.4	65.2	< 0.5	-
EH-67	< 5	23.5	< 5	53.2	< 1	9.2	< 5	17.8	15100	222	< 5	< 5	< 5	36.9	31	< 0.5	-
EH-121	26.7	-	< 5	162	3.2	12.3	< 5	21.7	12400	274	57.3	< 5	20.9	43	70.6	< 0.5	-
S25-J4	108	2920	-	-	63	-	-	-	-	-	-	-	-	-	-	-	-
S25-J5	51	587	-	-	16	-	-	-	-	-	-	-	-	-	-	-	-
S25-J6	39	221	-	-	8	-	-	-	-	-	-	-	-	-	-	-	-
S25-K4	87	541	-	-	11	-	-	-	-	-	-	-	-	-	-	-	-
S25-K5	93	1104	-	-	23	-	-	-	-	-	-	-	-	-	-	-	-
S25-K6	73	806	-	-	15	-	-	-	-	-	-	-	-	-	-	-	-
S25-L6-1	330	1492	-	-	43	-	-	-	-	-	-	-	-	-	-	-	-
S25-L6-2	231	2300	-	-	35	-	-	-	-	-	-	-	-	-	-	-	-
Parcel 2a - Sam	npled April	17 - 24, 20	016														
P2a-DU1	246	2390	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU2	223	2110	6	152	28.9	21	10	318	24600	3080	0.6	19.4	0.8	54	2280	1.8	< 0.3
P2a-DU3 ^a	92	637	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU4	69	631	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU5	86	635	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU6	136	1480	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU7	108	884	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU8	40	420	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU9	69	666	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU10 ^a	92	794	2.7	147	13.8	22.4	10	192	23700	1460	0.9	6.1	0.8	54	1080	1.4	< 1
P2a-DU11	67	566	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU12	103	1110	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU13	111	1120	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU14	34	543	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU15	27	350	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU16	99	893	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU17 ^a	69	541	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU18	114	1030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU19	28	259	1.5	137	7.3	21.1	7	64	21300	469	< 0.5	1.4	0.6	51	153	0.64	< 1
P2a-DU20	27	388	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU21	39	423	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU22	95	800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Sample																	
Location	As	Pb	Sb	Ва	Cd	Cr	Со	Cu	Fe	Mn	Se	Ag	Tİ	v	Zn	Hg	Cr VI
P2a-DU23	130	1060	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU28	99	729	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU24	21	142	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU25	27	316	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU26	36	534	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P2a-DU27	106	902	3.1	126	17.3	18.3	9	179	19700	1690	0.6	7.1	0.9	45	1050	1.3	< 1
Parcel 15 - sam																	
41	110	620	0.45	168	18	14	8.5	60	14100	321	0.07	1.9	0.5	32	177.91	2.9	
43	46	373	0.27	153	12	11	8	38	13500	474	0.55	0.8	0.6	22	114.91	2.1	
S1AP-1	95	1911	-	-	37	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-10	122	2726	-	-	48	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-11	126	2758	-	-	51	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-12	188	5162	-	-	85	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-13	161	4263	-	-	70	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-14	148	4026	-	-	92	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-15	144	3313	-	-	88	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-16	63	1469	-	-	36	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-17	81	1538	-	-	42	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-18	32	45	-	-	< 5	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-2	69	1022	-	-	33	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-3	67	1070	-	-	28	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-4	77	1113	-	-	24	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-5	85	1272	-	-	38	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-6	74	1143	-	-	32	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-7	102	1736	-	-	44	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-8	104	2398	-	-	38	-	-	-	-	-	-	-	-	-	-	-	-
S1AP-9	107	2448	-	-	50	-	-	-	-	-	-	-	-	-	-	-	-
Parcel 15 - sam	pled May	5 - 8, 2016	i i														
P15-DU1	75	480	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DU2	35	367	1.8	174	10.7	22.7	7	76	18900	526	0.9	1.9	0.9	46	315	0.82	< 1
P15-DU3	54	2020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DU4	49	369	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DU5	55	453	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DU6	61	865	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DU7	44	410	1.5	198	13	25.2	8	58	19700	437	0.9	1.9	0.9	55	165	1.6	< 1
P15-DU8	50	746	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DU9	37	402	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DU10 ^a	35	378	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DU11	34	284	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DU12 ^a	35	314	1.2	175	9.7	26.8	9	46	21800	467	0.9	1.5	0.9	58	128	1.1	< 1
P15-DU13	34	237		-	-	-	-	-	-	-	-	-	-	-	-	-	-
	34	238	-	-					-	-		-	-		-	-	

Sample	_	-	<u>.</u>	~	~	~	-						_		• • • •
Location	As	Pb	Sb	Ва	Cd	Cr	Со	Cu	Fe	Mn	Se	Ag	Tİ	V	Zn	Hg	Cr VI
P15-DU15	29	275	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DUA1	65	971	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DUA2	49	706	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DUA3	109	1890	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DUA4	66	741	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P15-DUA5 ^a	26	489	1.6	116	11.5	15.9	8	103	19700	356	0.8	3	0.8	58	236	1.2	< 1
Parcel 23 - Sam	-																
69	65	417	0.27	163	14	12	9	43	12500	430	0.07	1.4	0.46	17	127.91	2.5	
S12AP01-4	57	422	-	-	7	-	-	-	-	-	-	-	-	-	-	-	-
S12AP01-5	78	739	-	-	17	-	-	-	-	-	-	-	-	-	-	-	-
Parcel 23 - Sam	• •	-															
P23-DU1	68	510	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU2	63.7	456	1.9	131	12.4	23.6	9	100	22800	749	1.6	3.4	0.9	57	448	1.4	< 0.3
P23-DU3 ^a	78	524	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU4	87	621	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU5	78	505	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU6	42	479	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU7	70	519	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU8	65	409	1.5	138	10.1	25.6	10	91	23400	790	1.3	3.3	0.8	62	434	1.4	< 1
P23-DU9	58	340	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU10	64	420	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU11	62	363	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU12	49	266	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU13	52	403	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU14	39	221	0.9	117	4.5	20.4	9	58	20800	1120	< 0.5	1.6	0.4	58	400	0.6	< 1
P23-DU15	53	438	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU16	53	297	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU17 ^a	52	376	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU18	66	399	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU19	64	429	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU20 ^a	57	357	1.6	155	10.4	24.5	11	90	24500	824	0.9	2.6	0.9	58	497	1.6	< 1
P23-DU21	79	476	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU22	72	400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU23	36	214	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU24	60	336	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU25	55	297	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU26	44.6	331	1	115	10.8	22	9	90	23600	500	0.9	1.8	0.8	68	510	1.6	< 0.3
P23-DU27	39	262	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU28 ^a	29.2	198	0.8	76	3.8	23	6	52	20000	673	< 0.5	1.4	0.3	56	427	0.19	0.98
P23-DU29	40	260	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P23-DU30	59	377	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Sample																	
Location	As	Pb	Sb	Ва	Cd	Cr	Со	Cu	Fe	Mn	Se	Ag	TI	v	Zn	Hg	Cr VI
							9	Subsurface	Soil								
Parcel 2a - Sam	pled 2008																
EH-121-02	27.8	-	-	-	3.4	-	-	18	-	-	46.5	-	-	-	39.3	-	-
EH-121-03	31.8	-	-	-	3.9	-	-	29	-	-	29	-	-	-	37.8	-	-
EH-66-02	19.7	-	-	-	2.9	-	-	13.7	-	-	49.7	-	-	-	35.9	-	-
EH-66-03	28.8	-	-	-	2.8	-	-	23.1	-	-	18.8	-	-	-	34.4	-	-
EH-67-02	5.2	50.5	-	-	4.6	-	-	29.3	-	-	28.9	-	-	-	54.7	-	-
EH-67-03	< 5	141	-	-	7.3	-	-	46.6	-	-	36.4	-	-	-	89.4	-	-

Corrective Measures Study Report, Former ASARCO East Helena Facility

Notes:

Results presented in milligrams per kilogram.

Ag = silver; As = arsenic; Ba = barium; Ca = calcium; Cd = cadmium; Co = cobalt; Cr = chromium; Cr VI = hexavalent chromium; Cu = copper; Fe = iron; Hg = mercury; Mn = manganese; Pb = lead; Sb = antimony; Se = selenium; Ti = titanium; V = vanadium; Zn = zinc.

^aThe highest value is shown at field duplicate sample locations.

Subsurface soil sample interval reflected in sample location ID as follows:

02 = 2 to 4 feet below ground surface (bgs)

03 = 4 to 6 feet bgs

Sample Identification	Sample Location	As (mg/kg)	Pb (mg/kg)
23-1-SD	Upstream	25	150
23-2-SD	Upstream	15	83
23-3-SD ^a	Upstream	20	95
23-4-SD	Upstream	19	152
23-5-SD	Upstream	10	47
2a-1-SD	Downstream	12	83
2a-2-SD	Downstream	54	402
2a-3-SD	Downstream	21	132
2a-4-SD ^a	Downstream	33	284
2a-5-SD	Downstream	18	85
2a-6-SD	Downstream	20	139
2a-7-SD	Downstream	46	306
2a-8-SD	Downstream	20	106
2a-9-SD	Downstream	33	188
2a-10-SD	Downstream	26	138
2a-11-SD	Downstream	32	201

 Table 3-8. Constituent of Potential Concern Concentrations in Sediment

 Corrective Measures Study Report, Former ASARCO East Helena Facility

^aThe highest value is shown at field duplicate sample locations.

Notes:

mg/kg = milligrams per kilogram

As = arsenic

Pb = lead

Table 3-9. Hydraulic Parameters by Source Area

Source Area	Average Saturated Thickness (ft)	Conductivity (ft/day) [Ka]	2014 Gradient [i] (ft/ft)	Effective Porosity [n _e] (%)	Seepage Velocity (ft/day)
West Selenium	4	200	0.0087	18	9.7
North Plant	10	200	0.0085	18	9.4
Speiss-Dross	36	140	0.011	18	8.6
Acid Plant	11	50	0.0193	12	8.0

Corrective Measures Study Report, Former ASARCO East Helena Facility

Seepage Velocity Calculated via:

$$v = \frac{K_a i}{n_e}$$

where:

v= seepage velocity (ft/day)

 $K_a = hydraulic conductivity (ft/day)$

i = gradient

n_e = effective porosity

		Depth	Exposure		EPC	Commercial/	Recreational	EPC Exceeds		
Parcel	Medium	Grouping	Scenario	Analyte	(mg/kg)	Industrial MCS	MCS	MCS?	Notes	Arsenic Risk
	Sediment	Surface	Recreational	Arsenic	45.47	22	794	no	EPC < MCS	8.6E-06
	Seument	Surface	Recreational	Lead	306.2	na	3245	no	EPC < MCS	
2a		Surface	Commercial/	Arsenic	133.5	573		no	EPC < MCS	3.5E-05
	Soil	Surface	Industrial	Lead	1169	800	na	yes	EPC > Commercial/Industrial MCS	
-		Subsurface	Commercial/	Arsenic	29.8	573		no	EPC < MCS	
15	Soil	Surface	Commercial/	Arsenic	64.07	573	na	no	EPC < MCS	1.7E-05
15	3011	Surface	Industrial	Lead	1028	800	na	no	EPC < MCS	
	Sediment	Surface	Recreational	Arsenic	29.91	n 2	794	no	EPC < MCS	5.6E-06
23	Seument	Surface	Recreational	Lead	204	na	3245	no	EPC < MCS	
25	Soil	Surface	Commercial/	Arsenic	69.31	573	22	no	EPC < MCS	1.8E-05
	3011	Surface	Industrial	Lead	465.2	800	na	no	EPC < MCS	
				These parcels	s were remed	iated as part of the	e SPHC IM and c	lo not exceed a	EPC compared to MCS; significant e	xcavation was
Parcels		c (Commercial/In	needed to re	locate PPC an	d excavated areas	outside the new	v creek channel	were backfilled using soil with conc	entrations
8W, 10, 11,	Soil	Surface	dustrial	below the M	CSs. Potential	human exposures	to concentratio	ons in soil highe	r than MCSs are therefore not expec	ted to occur

Table 4-1. Summary of Human Health Risk Assessment Exposure Point Concentrations in Soil and Sediment

Corrective Measures Study Report, Former ASARCO East Helena Facility

below the MCSs. Potential human exposures to concentrations in soil higher than MCSs are therefore not expected to occur dustrial at these parcels.

Subsurface dustrial	18	Subsurface	Commercial/In dustrial	·
---------------------	----	------------	---------------------------	---

Notes:

12. 17 and

mg/kg = milligrams per kilogram

Soil

EPC = Exposure Point Concentration. Note that the maximum Chebyshev-based UCL was selected as the EPC for ISM samples (ITRC, 2012) and the maximum

recommended UCL was selected for discrete samples.

EPC values considered the potential exposure pathways for soil ingestion (direct contact) and inhalation of dust suspended into the air

MCS = Media Cleanup Standard

na = not applicable

ND = non-detect

UCL = 95 percent Upper Confidence Limit

Subsurface = greater than 2 feet below ground surface

Surface = 0 to 2 feet below ground surface

Arsenic risks are characterized by calculating lifetime cancer risks. See Appendix E for details of the calculation.

Lead risks are characterized by directly comparing the EPC with the MCS. The MCSs for lead are based on a blood-lead level of 10 µg/dL.

 $\mu g/dL = micrograms per deciliter$

Table 4-2. Summary of Ecological Risk Assessment Exposure Point Concentrations in Soil
--

Depth EPC MCS Parcel Medium Grouping Analyte (mg/kg) (mg/kg) **Receptor for MCS** HQ **Explanatory Notes** Population-level effects are unlikely with an HQ Soil Surface Lead 1169 650 Passerine birds 1.8 2a slightly elevated above one 1.2 1169 955 Cattle 15 1028 1.6 650 Passerine birds Soil Surface Lead 1028 955 Cattle 1.1 23 Soil Surface 0.7 Lead 465.2 650 Passerine birds HQ < 1 465.2 955 Cattle 0.5 8W, 10, 11, Soil Surface These parcels were remediated as part of the 12, 17, and South Plant Hydraulic Control interim measure 18 and do not exceed an EPC compared to MCS; significant excavation was needed to relocate Prickly Pear Creek and excavated areas outside the new creek channel were backfilled using soil with concentrations below the MCSs. Potential human exposures to concentrations in soil higher than MCSs are therefore not expected to occur at these parcels.

Corrective Measures Study Report, Former ASARCO East Helena Facility

Notes:

mg/kg = milligrams per kilogram

EPC = exposure point concentration. Note that the maximum Chebyshev-based upper confidence limit (UCL) was selected as the EPC for ISM samples (ITRC, 2012) and the maximum recommended UCL was selected for discrete samples.

HQ = hazard quotient

MCS = media cleanup standard

Table 4-3. Remaining Unacceptable Risk Post-Interim Measure Construction

Corrective Measures Study Report, Former ASARCO East Helena Facility

			Potential Exposure	Assessment of Potential	
CMS Parcel	Exposure Media	Receptors	Pathway	Exposure	Assessment of Risks
2a	Soil	Industrial/	Direct contact	Pathways potentially complete	Overall lead exposures are lower than levels protective of human health (i.e.,
		Commercial		under current or future land uses	blood-lead levels are less than 10 µg/dL). Concentrations of arsenic fall within
		Recreational			target risk range.
		Ecological (passarine)	Direct contact	Pathway potentially complete	Risk from concentrations of lead are minimal and do not require remediation.
	Sediment	Recreational	Direct Contact	Pathways potentially complete	Overall lead exposures are lower than levels protective of human health (i.e.,
				under current or future land uses	blood-lead levels less than 10 μg/dL). Concentrations of arsenic fall within
					target risk range.
	Groundwater	Residential	Ingestion	Potentially complete ^a	None: concentration of arsenic and selenium are below MCS (i.e., drinking
				<i>,</i> .	water MCLs).
W, 10, 11, 12, 17,	Soil	Recreational	Direct contact	Potentially complete	Risk unlikely to be present due to implementation of SPHC IM to meet MCSs.
18	Sediment				
	Surface water				
15	Soil	Industrial/	Direct contact	Pathway complete under current	Lead concentrations fall below MCS and levels protective of human health;
		Commercial		or future land use	lifetime cancer risk from arsenic falls within target risk range.
		Ecological (passarine)	Direct contact	Pathway potentially complete	Risk from concentrations of lead are minimal and do not require remediation.
	Groundwater	Residential	Ingestion	Potentially complete ^a	Concentration of arsenic (West Arsenic Source Area) higher than MCS (i.e.,
					drinking water MCLs).
16, 19	Soil	Ecological (passarine)	Direct contact	Potentially complete	Risk unlikely to be present due to implementation of ET Cover System IM to
					meet MCSs.
	Groundwater	None	None	Incomplete	None: groundwater use is prohibited within the Facility.
	Unfumed Slag	Trespasser	Direct contact	Potentially complete	Risk not quantified due to ongoing evaluation of corrective measures.
23	Soil	Recreational	Direct contact	Pathways potentially complete	Concentrations of lead and arsenic are lower than MCSs; overall lead exposures
				under current or future land uses	are lower than levels protective of human health; concentrations of arsenic fall
					within target risk range.
		Ecological (passarine)	Direct contact	Pathway potentially complete	Risk from concentrations of lead is minimal and requires no remediation.
	Sediment	Recreational	Direct contact	Pathways potentially complete	Concentrations of lead and arsenic are lower than MCSs; overall lead exposures
				under current or future land uses	are lower than levels protective of human health; concentrations of arsenic fall
					within target risk range.

Note:

^a Groundwater pathway potentially complete if used as a drinking water source.

MCS = media cleanup standard (see Table 2-1)

µg/dL = microgram(s) per deciliter

Table 5-1. Overview of Source Area Screening-Level Evaluation

Corrective Measures Study Report, Former ASARCO East Helena Facility

		Remedy Screening Evaluation	
Source Area ^a	Preliminary Alternative	Notes on Scoring	Recommended for Further Evaluation (Y/N)
Affected Groundwater Area	Baseline action: includes planned IMs, CGWA, and MNA	Baseline action will be implemented regardless of recommendation of the evaluation. All other potential groundwater remedies and their associated costs are considered supplemental.	NA
	Pump and treat onsite and offsite groundwater Pump and treat onsite groundwater	Not cost-effective. Not cost-effective.	No No
	Pump and treat combined with slurry wall	Uncertain effects on downgradient plume stability and geometry and not cost effective.	No
West Selenium Source Area	Source Removal	Recommend using the groundwater flow model to determine effectiveness in comparison to other remedies. Moderate cost.	Yes
	PRB, with funnel-and-gate system Slurry Wall (hydraulic enclosure of source area)	Favorable effectiveness and implementability with low cost. Slurry walls have been shown to be effective and appears to be cost- effective.	Yes Yes
	Focused pump and treat	Reasonably effective, and favorable implementability with potential for low cost.	Yes
North Plant Arsenic Source Area	a Source Removal	Not cost-effective.	No
	PRB, with funnel-and-gate system	Effective, technology is readily available, reasonably cost-effective.	Yes
	Slurry Wall (hydraulic enclosure of source area)	Slurry walls have been observed to be effective and appears to be cost- effective.	Yes
	In-situ treatment (dosing of aquifer with Fe), to augment slurry wall	Can be effective if used in conjunction with slurry wall.	Yes
	In-situ treatment (to augment slurry wall)	High costs and difficult to implement.	No
Former Speiss/Dross Source Area	No Further Action (includes existing slurry walls)	Already implemented, and is cost-effective.	NA
	Source Removal	Additional cost not justified when existing slurry wall appears generally to be effective.	No
	Expand slurry wall system to encompass former Speiss Storage and Handling Area	Technologies are available but high implementation factor due to technology being installed close to the Ore Storage Building.	No
	In-situ treatment (dosing of aquifer with Fe), to augment slurry wall	Would be effective with another technology such as a slurry wall, but not effective alone.	No

^a Further investigation and evaluation of the former Acid Plant and Slag Pile areas was deferred.

Notes:

CBS = combined balancing score	NA = not applicable
CGWA = Controlled Groundwater Area	O&M = operations and maintenance
Fe = ferrous sulfate	PRB = permeable reactive barrier
IM = interim measure	Se = selenium

Table 5-2. RCRA Balancing Criteria, Definitions, and Interpretation/Application to Remedy Evaluations

Corrective Measures Study Report, Former ASARCO East Helena Facility

Balancing Criteria	Definition (per RCRA [USEPA, 2000])	Interpretation and Application of Balancing Criteria to Remedy Evaluation	Scoring
1. Long-term Effectiveness and Permanence	Decision-makers should evaluate remedies based on the long-term reliability and effectiveness they afford, along with the degree of certainty that they will remain protective of human health and the environment. Additional considerations include the magnitude of risks that will remain at a site from untreated hazardous wastes, hazardous wastes and hazardous constituents, and treatment residuals; and the reliability of any containment systems and institutional controls. A remedial option should include a description of the approaches and facilities that will be used to assess long-term performance and effectiveness.	Criteria evaluated as the relative improvement in groundwater concentrations for the COPC of interest (selenium for West Selenium and arsenic in North Plant) as a result of implementing the alternative in addition to interim measures; and also the permanence the alternative provides. Model simulations (by Newfields) will be used to quantify effectiveness considering the following metrics: (1) mass removal (in weight and percent), (2) plume geometry/volume reductions below DEQ-7 water quality standards, and (3) the temporal timeframe to achieve stable ('steady-state') conditions following implementation. Alternatives providing the highest degree of long-term effectiveness are those that achieve the most mass and volume reductions, have the highest degree of permanence, leave little or no waste (source), do not require long-term maintenance, and minimize the need for institutional controls.	"+" = Highest degree or su (reductions in mass and pl term. "O" = Moderate or margin: uncertainties or risks relat "-" = No substantive impro lacking permanence or con
2. Toxicity, Mobility, and Volume Reduction	Decision-makers should evaluate remedies based on the degree to which they employ treatment, including treatment of principal threats, that reduces the toxicity, mobility, or volume of hazardous wastes and hazardous constituents, considering, as appropriate: the treatment processes to be used and the amount of hazardous waste and hazardous constituents that will be treated; the degree to which treatment is irreversible; and the types of treatment residuals that will be produced.	Criteria focus on the degree to which an alternative does or does not employ a treatment technology. For alternatives that require treatment technology (such as PRB, pump and treat, and injections), the evaluation will describe (1) quantities and quality (i.e., concentrations) of groundwater requiring treatment, (2) degree in which treatment is irreversible, and (3) types and volumes of treatment residuals. For alternatives that do not require a geochemical alteration/treatment technology (such as source removal and slurry wall), the volume of source material will be estimated.	"+" = Alternative reduces t with limited or no residual "0" = Alternative reduces t residuals for management "-" = Alternative has limite reversible or has significan
3. Short-term Effectiveness	Decision-makers should evaluate remedies based on the short-term effectiveness and short-term risks that remedies pose, along with the amount of time it will take for remedy design, construction, and implementation.	Criteria address the effects during construction and implementation (i.e., short-term) and will focus on (1) short-term impacts/risks to human health (related to construction), (2) short-term impacts (i.e., releases) to the environment related to implementation of remedy, and (3) and how long it will take to design, construct, and implement the alternative.	"+" = No substantive risks/ to establish effectiveness. "0" = Moderate risks/impa establish effectiveness. "-" = High-degree of risks/ Requires significant durati
4. Implementability	Decision-makers should evaluate remedies based on the ease or difficulty of remedy implementation, considering as appropriate: the technical feasibility of constructing, operating, and monitoring the remedy; the administrative feasibility of coordinating with and obtaining necessary approvals and permits from other agencies; and the availability of services and materials, including capacity and location of needed treatment, storage, and disposal services.	Criteria focus on (1) administrative components, (2) regulatory coordination and approvals, and (3) overall ease or difficulty of constructing, operating, and monitoring the remedy; including availability of services relative of the types of alternatives and/or complexity of specialty services needed. Alternatives that are considered easiest or most favorable to implement are those which (1) do not require substantive agency approval or permits, (2) do not require long-term O&M, and (3) do not rely on specialty technologies, services, or materials.	"+" = Administrative items monitoring are considered long-term O&M. Short dur "0" = Neutral score if not e effectiveness. "-" = Alternative requires a substantive long-term O&I implement alternative.
5. Cost	Decision-makers should evaluate remedies based on capital and O&M costs, and the net present value of the capital and O&M costs.	Estimated costs have been developed for each alternative using Study or Feasibility Class 4 guidance (Association for the Advancement of Cost Engineering, 2005) with expected accuracy of -30 to +50 percent. Costs reflect both capital and long-term O&M (when applicable) assuming a 30-year period net present worth at 5 percent rate of return (unless specified otherwise). The total cost reflects capital and long-term O&M (if applicable). Costs are based on conceptual designs and are not considered final designs; if an alternative is selected, a final design will be developed before implementation.	"+" = Relatively low. Cost i "0" = Moderate. Cost rang "-" = Relatively high. Cost
6. Community Acceptance	Decision-makers should evaluate remedies based on the degree to which they are acceptable to the interested community.	The evaluation is based on the first five technical criteria (listed above). Community acceptance will be evaluated as part of the public involvement process.	
7. State Acceptance	Decision-makers should evaluate remedies based on the degree to which they are acceptable to the state in which the subject facility is located. This is particularly important where the U.S. Environmental Protection Agency, not the state, selects the remedy.	The evaluation is based on the first five technical criteria (listed above). State acceptance will be evaluated as part of the public involvement process.	
COPC=constituerM=millionMCL=maximumO&M=operationsRCRA=Resource	nt of concern nt of potential concern contaminant level s and maintenance Conservation and Recovery Act	ased RCRA Corrective Action. RCRA Corrective Action Workshop on Results-Based Project Management:	Fact Sheet Series. March.

Scoring Logic [+ positive, 0 neutral, - negative]

ighest degree or substantive improvements in groundwater metrics ions in mass and plume reduction); alternative is permanent over the long-

Ioderate or marginal improvement in groundwater metrics; and/or some inties or risks relative to permanence.

substantive improvement in groundwater metrics and/or the alternative is permanence or considered a high-risk, unproven technology.

Iternative reduces toxicity and mobility of hazardous material; irreversible nited or no residuals management.

Iternative reduces toxicity, mobility, or volume; irreversible but with some Is for management.

ternative has limited effect on toxicity, mobility, or volume reduction; ole or has significant residual management.

o substantive risks/impacts to human health or environment. Short duration blish effectiveness.

oderate risks/impacts to human health or environment. Longer duration to sh effectiveness.

gh-degree of risks/impact to human health or environmental impacts. es significant duration to establish effectiveness.

dministrative items, regulatory approvals, construction, operation, and ring are considered relatively easy, feasible, or readily implementable. No rm O&M. Short duration to implement alternative.

eutral score if not easy or "complex." Longer duration to establish eness.

ternative requires agency substantive or nonstandard approvals or permits, ntive long-term O&M, specialty technology, and/or significant duration to ent alternative.

elatively low. Cost is less than \$2M.

Ioderate. Cost ranges from \$2 to \$5M.

latively high. Cost is greater than \$5M.

Table 5-3. Description of Remedial Alternatives Retained for Detailed Evaluation

Corrective Measures Study Report, Former ASARCO East Helena Facility

Area	Alternative	Technology Description/Assumptions	Dimensions/Unit Quantities	Construct
West Selenium Area (COPC is selenium)	1 – Source Removal	Assumes physical excavation and relocation of saturated zone source materials to an onsite location that is beneath the future ET cover but above the saturated zone. The alternative is expected to reduce ongoing mobilization and leaching of selenium from the primary source area to groundwater. Primary source area boundaries assumed to capture an estimated 70 percent of source/mass (personal communication with Bob Anderson/Hydrometrics, January 9, 2015).	 Area 100 x 200 x 48 ft bgs. Quantity estimates: Interim measure cover: 2,222 yd³ Unsaturated zone: 29,629 yd³ Saturated zone (source removal): 4,444 yd³ Backfill of clean borrow material: 4,444 yd³ (West Bench) 	 Saturated zone material placed und Clean borrow material via West Ber Unsaturated zone soils placed back Dewatering limited because of soldi zone, groundwater pumped to temp All earthwork done onsite; no offsit
	2 – PRB for Selenium	Technology assumes passive groundwater flow through the reactive media to treat selenium. PRB media consist of 90 percent organic mulch and 10 percent limestone sand placed across saturated interval. Influent selenium concentrations assume 3.0 mg/L; treatment targets assume 0.05 mg/L (MDEQ-7 groundwater standard). Media will have finite life and will require monitoring to determine when media needs replacement.	100-ft-long PRB with 25-ft funnels (slurry walls) at either end. PRB installed across saturated interval, wall width of 12 ft (perpendicular to flow) designed to achieve residence time of 2 days. Funnel walls installed from ash/clay to ground surface and designed to have limited influence on groundwater flow patterns.	 Passive treatment of selenium cons Limited formal research/documenta Construction approach assumes lon Long-term O&M assumes full replac schedule determined from monitor Spent media disposed of offsite; vol
	3 – Slurry Wall Enclosure	Technology assumes an effective, low-permeability enclosure "wall" located around the primary source area saturated zone; design assumptions are to reduce the mobility/flux from within the enclosure area. Design assumes slurry wall permeability of 1x10 ⁻⁶ cm/sec or lower.	Perimeter of 1,100 linear feet based on enclosure dimensions of 100 x 450 ft in plan view. Depth of slurry wall assumes 48 ft bgs down to ash/clay layer. Typical construction approach assumes slurry wall installed from ash/clay layer to ground surface.	 Construction approach assumes lon soil-bentonite blend. Permeability options: soil-bentonite 1x10⁻⁶ cm/sec; difference in cost is a bentonite wall.
	4 – Pump and Treat (P&T)	 Technology assumes a long-term groundwater extraction system extending across a width of about 100 ft (approximate width of plume) and then conveyance of groundwater to passive treatment system, which includes: Biochemical reactor beds consisting of organic mulch, limestone, and sand Aeration channel Oxidation/settling ponds Discharge to existing wetlands and Prickly Pear Creek 	 Groundwater Extraction System: Three wells – combined total flow of 30 gallons per minute Buried conveyance pipe: about 4,800 ft Treatment System: Dual biochemical reactor beds: total volume 12,400 yd³ Dual oxidation ponds: total volume 584 yd³ See process flow diagram in Appendix C for details 	 P&T option will require regulatory a and effluent/discharge limits Treatment system will require routi replacement of spent media. Costin years 10 and 20; actual replacement Treatment system will require winte conveyance line, buried biochemica mechanical agitator). These items were specific to the system will result to the system will require winter the system will require winter the system will require winter the system will require winter the system will require winter the system will require winter the system will require winter the system will require winter the system will require winter the system will require winter the system will require winter the system will be approximately approximately with the system will be approximately approximately with the system will be approximately app

Notes:

Alternative 7 (in-situ injections) is assumed supplemental to Alternative 6 (injections within the slurry wall). If Alternative 6 is selected, then the need for Alternative 7 may be evaluated and decided on after the slurry wall is constructed and the effectiveness evaluated, among other criteria. Abbreviations:

- bgs = below ground surface
- cm/sec = centimeter(s) per second
- COPC = constituent of potential concern
- ET = evapotranspiration
- ft = foot/feet
- ICS = Interim Cover System
- MDEQ = Montana Department of Environmental Quality
- mg/L = milligram(s) per liter
- P&T = pump and treat
- PRB = permeable reactive barrier
- VSF = vertical square foot
- yd³ = cubic yard
- ZVI = zero-valent iron

uction Approach and Key Assumptions

nder ICS-2 (and ET cover).

Bench placed in saturated zone.

ck into excavation in unsaturated zone.

ldier pile-sheet pile walls; sump-pump used to dewater saturated mporary tank and hauled to existing treatment plant.

site hauling or disposal.

nsidered 'pilot study'; long-term viability/effectiveness uncertain. ntation on full-scale studies over long-term.

ong-arm excavator to install PRB and funnel ends.

lacement of PRB media in years 10 and 20; actual replacement oring/effectiveness.

volume estimated at 444 yd³.

ong-arm excavator to install slurry wall and use of excavated soil in

nite wall 1x10⁻⁷ cm/sec or cement-bentonite wall is about \$3/VSF. Costing approach is conservative and assumes soil-

y approvals and discharge permit to set monitoring requirements

utine maintenance (weekly), monitoring, and intermittent ting approach assumes biochemical reactor beds are replaced at ent cycle depends on monitoring.

nterization design for year-round operation (such as buried ical reactor beds, heat-traced lines, and heated blower or s will add capital costs and also replacement costs to replace media.

Table 5-3. Description of Remedial Alternatives Retained for Detailed Evaluation

Corrective Measures Study Report, Former ASARCO East Helena Facility

Area	Alternative	Technology Description/Assumptions	Dimensions/Unit Quantities	Constructi
North Plant 5 – PRB for Arsenic (COPC is arsenic)		Technology assumes passive groundwater flow through the reactive media to treat arsenic. PRB media consist of 100 percent pure ZVI (granular iron) placed across saturated interval. Influent arsenic concentrations assume 20 to 25 mg/L; treatment targets assume 0.01 mg/L (MDEQ-7 groundwater standard). Media will have finite life and will require monitoring to determine when media needs replacement.	400-ft-long PRB with 125-ft funnels at either end; alignment is adjusted to stay on Custodial Trust-owned property. PRB is 8 ft thick to achieve residence time of 2+ days. Funnel walls installed from ash/clay to ground surface and designed to have limited influence on groundwater flow patterns.	 Construction approach assumes long Long-term O&M assumes full replace schedule determined from monitorin Spent media disposed of offsite; volu Unit cost of pure ZVI is \$1,020/ton; v 5,000 tons, which is about 75 percer
	6 – Slurry Wall Enclosure	Technology assumes an effective, low-permeability enclosure "wall" located around source area saturated zone; design assumptions are to reduce mobility/flux from within the enclosure area. Design assumes slurry wall permeability of 1x10 ⁻⁶ cm/sec or lower.	Perimeter of 1,560 linear feet. Depth of wall to 51 ft bgs to ash/clay layer. Alignment of wall adjusted to stay within Custodial Trust-owned property.	 Construction approach assumes long soil-bentonite blend. Permeability options: soil-bentonite 1x10⁻⁶cm/sec; difference in cost is all bentonite wall.
	7 - In-Situ Injections (in conjunction with Alternative 6 slurry wall enclosure).	Technology assumes installation of injection wells within slurry walls to deliver (via injection) nanoslurry mixture within slurry wall enclosure. ZVI nanoparticles have relatively high-surface area to volume ratio and are demonstrated to be effective at binding arsenic in solution.	Design assumes five injection wells placed within the slurry wall enclosure. Injections assume ZVI micro/ nanoparticles placed (injected) via slurry form. Treatment assumes 2.4M gallons within the slurry walls.	 Conceptual-design estimates of weig volume needed for treatment deper first of four proposed injections. Unit cost of ZVI nanoparticles in dry Costs assume that the 2 tons (total)

Notes:

Alternative 7 (in-situ injections) is assumed supplemental to Alternative 6 (injections within the slurry wall). If Alternative 6 is selected, then the need for Alternative 7 may be evaluated and decided on after the slurry wall is constructed and the effectiveness evaluated, among other criteria. Abbreviations:

- bgs = below ground surface
- cm/sec = centimeter(s) per second
- COPC = constituent of potential concern
- ET = evapotranspiration
- ft = foot/feet
- ICS = Interim Cover System
- MDEQ = Montana Department of Environmental Quality
- mg/L = milligram(s) per liter
- P&T = pump and treat
- PRB = permeable reactive barrier
- VSF = vertical square foot
- yd³ = cubic yard
- ZVI = zero-valent iron

action Approach and Key Assumptions

ong-arm excavator to install PRB and funnel ends

lacement of PRB media in year 10 and 20; actual replacement oring/effectiveness.

volume assumed at 2,370 yd³.

n; volume estimates assume the PRB will require approximately cent of the overall cost.

ong-arm excavator to install slurry wall and use of excavated soil in

ite wall 1x10⁻⁷ cm/sec or cement-bentonite wall s about \$3/VSF. Costing approach is conservative and assumes soil-

reight/volume of ZVI nanoparticles assume 2 tons; however, actual pendent on batch testing and effectiveness monitoring after the

dry form (to be mixed into slurry) assumed at \$40 per pound.

al) applied over four separate injection events.

Table 5-4. Combined Balancing Criteria Evaluation

Corrective Measures Study Report, Former ASARCO East Helena Facility

Area	Alternative	Long-Term Effectiveness and Permanence	Reduction in Toxicity, Mobility, or Volume through Treatment	Short-Term Effectiveness	Implementability	Cost (\$millions) (total cost includes capital and long-term O&M [if applicable])	Combined Balancing Criteria Score (CBS)	Comments
West Selenium (COPC is	1 – Source Removal	+	+	0	0	0 Total Cost: \$2.8M	+2	
selenium)						Capital: \$2.8M		
						Long-term O&M: none		
	2 – PRB for Selenium	0	0	+	0	0	+1	
		-	·		·	Total Cost: \$2.8M		
						Capital: \$1.5M		
						Long-term O&M: \$1.3M		
	3 – Slurry Wall Enclosure	+	0	+	+	+	+4	
						Total Cost: \$1.7M		
						Capital: \$1.7M		
						Long-term O&M: none		
	4 – Pump and Treat	0	0	+	-	0	0	
						Total Cost: \$4.1M		
						Capital: \$2.4M		
						Long-term O&M: \$1.7		
North Plant	5 – PRB for Arsenic	0	-	+	0	-	-1	
(COPC is arsenic)						Total Cost: \$20M		
arsenic)						Capital: \$10M		
						Long-term O&M: \$10		
	6 – Slurry Wall Enclosure	0	-	+	+	0	+1	
						Total Cost: \$2.1M		
						Capital: \$2.1M		
						Long-term O&M: none		
	7 – Slurry Wall Enclosure	0	-	+	+	0	+1	
	with Injections					Total Cost: \$2.5M		
						ALT6: \$2.1M		
						ALT7 Capital: \$0.1M (wells)		
						ALT7 Long-term O&M:		
						\$0.3M (injections)		

Notes:

Cost assumptions: long-term O&M assumed 30 years with Net Present Worth at 5 percent rate of return; refer to Tier II Source Control Measure/Groundwater Remedy Evaluation—Phase 2 Results and Recommendations (CH2M, 2015), included in Appendix C of the CMS Report, for supporting ROM Class 4 costing information.

Refer to Table 5-3 for alternative descriptions, Table 5-4 for balancing criteria and definitions, and Appendix B for tables that show details on the individual balancing criteria evaluation.

Alternative 7 is slurry wall with injections. If Alternative 6 is selected, then the need for Alternative 7 may be decided after the slurry wall is constructed and the effectiveness is evaluated.

CBS = combined balancing score

COPC = constituent of potential concern

= million Μ

O&M = operations and maintenance

P&T = pump and treat

PRB = permeable reactive barrier

Table 5-5. Overview of Source Area Remedy Evaluation Results

		Remedy Evaluation		
	Carried Forward from Screening-leve	el		
Source Area	Evaluation	Notes on Scoring	Evaluation Results	
West Selenium Source Area	Source Removal	CBS of plus two (+2); would be more effective at reducing toxicity, mobility, or volume through treatment; with uncertainty of source capture and cost limiting the overall score.	Recommend supplemental data and additional modeling to support continued evaluation.	
	PRB, with funnel-and-gate system	CBS of plus one (+1); a positive score for short-term effectiveness, but with lack of proven Se removal effectiveness and cost requirements for O&M limit the overall score.	Not evaluated further.	
	Slurry Wall (hydraulic enclosure of source area)	Highest CBS of plus four (+4); long-term effectiveness and permanence, short-term effectiveness, implementability, and cost.	Recommend supplemental data and additional modeling to support continued evaluation.	
	Focused pump and treat	Combined balancing score at neutral (0); negative scoring based on implementation with moderate cost effectiveness.	Not evaluated further.	
North Plant Arsenic Area	PRB, with funnel-and-gate system	CBS of negative one (-1); with positive score for short- term effectiveness, but negative scores on reduction in toxicity, mobility, or volume through treatment; the lack of significant contaminant mass and plume volume reduction and the cost limit the score		
	Slurry Wall (hydraulic enclosure of source area)	CBS of plus two (+2); positive scores for short-term effectiveness and implementability; the lack of significant contaminant mass and plume volume reduction and contaminated groundwater that remains within the slurry wall long-term limits the score.	Recommend supplemental data and additional modeling to support continued evaluation.	
	Slurry Wall Enclosure with In-situ treatment	CBS of plus three (+3); positive scores for reduction in toxicity, mobility, or volume through treatment, short- term effectiveness, and implementability. The remaining criteria were scored 0 (neutral).	To be considered based on evaluation results of previous alternative (Slurry Wall).	
Notes:				
CBS = combined balancing sco	re	NA = not applicable		
CGWA = Controlled Groundwa	ter Area	O&M = operations and maintenance		
Fe = ferrous sulfate		PRB = permeable reactive barrier		
IM = interim measure		Se = selenium		

Table 5-6. Summary of Predictive Results from Groundwater Flow Model

, , , ,		/	
Model Scenario	Constituent	Mass Flux Rate Across Facility Boundary (grams/day)	Flux Rate Decrease from 2011 (percent)
Groundwater 2011	Arsenic	11,300	0%
Groundwater 2011	Selenium	581	0%
Groundwater 2014	Arsenic	6,054	47%
Groundwater 2014	Selenium	360	38%
Predicted IM 2025	Arsenic	3,874	66%
Predicted IM 2025	Selenium	188	68%
Predicted IM with Acid Plant (70%) Removal 2025	Arsenic	3,862	66%
Predicted IM WSA Finite Mass 2025	Selenium	178	69%

Corrective Measures Study Report, Former ASARCO East Helena Facility

Notes:

IM = Interim Measure

WSA = West Selenium Area

Table 5-7. Estimated Selenium Reduction for Slag Pile Cover Alternatives Corrective Measures Study Report, Former ASARCO East Helena Facility

	Estimated % Reduction of Selenium in Groundwater in General Areas				
Cover Alternative	Slag Pile (DH-10A, 56, and 74)	Downgradient of Slag Pile (DH-6, 15, and 51)	Lamping Field Area (EH-126, 138, and 139)	Canyon Ferry Road Area (EH-142 and 143)	
Minimum	73%	69%	35%	38%	
Intermediate	76%	73%	38%	41%	
Maximum	94%	93%	56%	58%	
<i>GW Model Estimate 10% Recharge Rate</i>	85%	83%	47%	50%	

Table 6-1. Summary of Proposed Corrective Measures and Supplemental Institutional Controls

Proposed Remedy Elements	Engineering/Activity Components	Applicable Parcels	Applicable Media or Pathway
INGINEERING CONTROLS			-
			Groundwater
T Cover System - Building Demolition, Utility	ET Cover to mitigate infiltration of precipitation, control wind erosion	Facility (Parcels 16 10)	Soil
bandonment, Subgrade Fill, Final ET Cover		Facility (Parcels 16,19)	Sediment
	Surface water/stormwater collection		Surface water
outh Plant Hydraulic Controls: Upper Lake and Lower	Reduce surface water loading to groundwater by removing Upper Lake and Lower Lake		Groundwater
ake Removal; PPC Bypass; PPC Realignment; wetland onstruction	Establish natural stream channel flow and geomorphic conditions within Smelter reach	Facility (Parcels 16,19)	Surface water
	Establish natural wetland/riparian conditions		Sediment
peiss Dross Slurry Wall	Isolate impacted soil and prevent impacts to groundwater		Groundwater
	Remove through excavation impacted soil/sediment that could		Groundwater
ource removals - Excavation and Removal of Impacted ledia at Tito Park Area, former Acid Plant, and Upper	potentially leach to groundwater or surface water	Facility (Parcels 16,19)	Soil
ake Marsh	Protectively manage removed soil under ET cover system	racinty (raiters 10,19)	Surface water
	Protectively manage removed son under er cover system		Sediment
AMU 1 and CAMU 2	Isolate impacted soil, sediment and remediation waste and prevent impacts to groundwater	Facility (Parcels 16,19)	Groundwater
	Surface water/stormwater collection		Surface water
	ET Cover over unfumed slag to reduce infiltration		Groundwater
ag Pile - Grade and Cover	Slag pile regrading	Facility (Parcels 16,19)	Soil/Slag
			Sediment
	Surface water/stormwater collection		Surface water
ISTITUTIONAL CONTROLS IMPLEMENTED BY CUSTODIA			•
ustodial Trust Well Abandonment Program	Contact all residents with existing supply wells; Abandon existing residential wells and/or provide alternative water supply	Non Trust-Owned Properties	Groundwater
Custodial Trust Deed Restrictions	Implement deed restriction on Trust-owned property to restrict use to commercial/industrial only and prohibit groundwater use	Trust-Owned Properties including Facility (Parcels 16, 19)	Soil and Groundwater

Table 6-1. Summary of Proposed Corrective Measures and Supplemental Institutional Controls

Corrective Measures Study Report, Former ASARCO East Helena Facility

Proposed Remedy Elements	Engineering/Activity Components	Applicable Parcels	Applicable Media or Pathway
SUPPLEMENTAL INSTITUTIONAL CONTROLS IMPLEME	NTED BY OTHERS		1
East Valley Controlled Groundwater Area (CGWA)	Implement and maintain program through CGWA process	CMS Parcels (including Facility), Undeveloped Lands,	Groundwater
	Apply groundwater use restriction areas	Non Trust-Owned Properties	Gioundwater
	Implement and maintain program through COEH process	CMS Parcels (including Facility),	
City of East Helena Well Restrictions	Apply groundwater use restriction areas	Undeveloped Lands, Non Trust-Owned Properties	Groundwater
Lewis and Clark County and City of East Helena Soil	Implement and maintain lead education and abatement program through COEH process	Non Trust-Owned Properties	Soil
Ordinance	Apply property use restrictions		

Notes:

ET = evapotranspiration

PPC = Prickly Pear Creek

COEH = City of East Helena

Facility - Parcels 16, 19

CMS Parcels - Parcels 10, 11, 12, 15, 16, 17, 18, 19, 23, the portion of 8 located west of State Highway 518 (8W), and portions of Parcel 2 near Prickly Pear Creek (PPC; Parcel 2a) Undeveloped Lands - Parcels 2, 3, 4, 6, 7, 9, 13, 14, the portion of 8 located east of State Highway 518 (8E), 21, and 22

Table 6-2. Summary of Remedy Performance Standards by Parcel

Corrective Measures Study Report, Former ASARCO East Helena Facility

	Mandia with Datastic		Remedy Perfor	mance Standards	
Proposed Remedy	Unacceptable Risk	Protect HH and Environment	Achieve MCSs	Control Sources	Meets Current and Future Exposure/Use
Operable Unit 2 Record of Decision	Soil	No unacceptable risk (Table 4-1)	To be evaluated upon transfer of property ownership	Windborne deposition mitigated by ET Cover	Currently land is undeveloped similar to Operable Unit 2 Record of Decision parcels
South Plant Hydraulic Control and ET Cover	Groundwater		Yes	Interrelated IMs to reduce downgradient concentrations	
,		No unacceptable risk (Table 4-1); IMs are	Yes - contaminated soil and sediments	N/A - sources removed	Constructed riparian corridor appropriate for
					industrial (future) or recreational use (current
wettand construction		CGWA and COEH restrictions	materials		
Operable Unit 2 Record of Decision	Soil	No unacceptable risk (Table 4-1)	To be evaluated upon transfer of property ownership	Windborne deposition mitigated by ET Cover	Meets industrial MCSs (future use); no risk to ecological receptors (current use)
CGWA (supplemental institutional control implemented by	Groundwater	Reduce potential for contact with and	Contaminant concentrations are	No source: plume in this area is	Protected by the CGWA
others)		ingestion of impacted groundwater	expected to decrease over time due to reductions in mass loading from remedy	attributed to naturally occurring arsenic	
ET Cover, Source Removal, Speiss Dross Slurry Wall, CGWA	Soil	- Prevent contact with impacted media	Yes	Removed or under protective ET Cover	Meets industrial MCSs
(supplemental institutional control implemented by	Groundwater	through removal or under protective ET Cover	Contaminant concentrations are	Excavated where possible, reduce	Use prohibited by CGWA
others)		Less II. Succession and a second state of the state of the	expected to decrease over time due to		
			• ,		
Grade and Cover	Unfumed Slag		-	, ,	Fumed clag available for recovery and
Grade and Cover	Uniumed slag	 Improve downgradient water quality over time 		runoff to discharge in Prickly Pear Creek	industrial use
Operable Unit 2 Record of Decision	Soil	No unacceptable risk (Table 4-1)	Yes	Windborne deposition mitigated by ET Cover	Currently land is undeveloped similar to Operable Unit 2 Record of Decision parcels
Proposed Remedy	Exposure Media	Protect HH and Environment	Achieve MCSs	Control Sources	Meets Current and Future Exposure/Use
Operable Unit 2 Record of Decision, COEH Soil Ordinance, COEH Well Restrictions	Groundwater	Reduce potential for human contact with and ingestion of impacted groundwater	Contaminant concentrations are expected to decrease over time due to reductions in mass loading from remedy implementation	Reduced concentrations at Facility will eventually propogate downgradient	Ensures protection until groundwater meets MCSs
Operable Unit 2 Record of Decision, COEH Soil Ordinance	Soil	Reduce potential for human contact with impacted soil	MCS will be achieved by adherence to COEH soil ordinance or a Trust institutional control if not within COEH	Windborne deposition mitigated by ET Cover	Ensures property use is appropriate to existing conditions
Proposed Remedy	Exposure Media	Protect HH and Environment	Achieve MCSs	Control Sources	Meets Current and Future Exposure/Use
Custodial Trust Well Abandonment Program; COEH Well Restrictions; CGWA (supplemental institutional control implemented by others)	Groundwater	Reduce potential for human contact with and ingestion of impacted groundwater	Contaminant concentrations are expected to decrease over time due to reductions in mass loading from remedy implementation	Reduced concentrations at Facility will eventually propogate downgradient	Ensures protection until groundwater meets MCSs
Operable Unit 2 Record of Decision, COEH Soil Ordinance	Soil	Reduce potential for human contact with impacted soil	MCS will be achieved by adherence to COEH soil ordinance or a Trust institutional control if not within COEH	Windborne deposition mitigated by ET Cover	Ensures property use is appropriate to existing conditions
	Operable Unit 2 Record of Decision South Plant Hydraulic Control and ET Cover South Plant Hydraulic Control: Upper Lake and Lower Lake Removal, Prickly Pear Creek Bypass and Realignment, wetland construction Operable Unit 2 Record of Decision CGWA (supplemental institutional control implemented by others) ET Cover, Source Removal, Speiss Dross Slurry Wall, CGWA (supplemental institutional control implemented by others) Grade and Cover Operable Unit 2 Record of Decision Operable Unit 2 Record of Decision, COEH Soil Ordinance, COEH Well Restrictions Operable Unit 2 Record of Decision, COEH Soil Ordinance Proposed Remedy Operable Unit 2 Record of Decision, COEH Soil Ordinance Operable Unit 2 Record of Decision, COEH Soil Ordinance Operable Unit 2 Record of Decision, COEH Soil Ordinance Operable Unit 2 Record of Decision, COEH Soil Ordinance Proposed Remedy Custodial Trust Well Abandonment Program; COEH Well Restrictions; CGWA (supplemental institutional control implemented by others)	Operable Unit 2 Record of Decision Soil South Plant Hydraulic Control and ET Cover Groundwater South Plant Hydraulic Control: Upper Lake and Lower Lake Soil Removal, Prickly Pear Creek Bypass and Realignment, Sediment wetland construction Soil Operable Unit 2 Record of Decision Soil CGWA (supplemental institutional control implemented by others) Groundwater ET Cover, Source Removal, Speiss Dross Slurry Wall, CGWA (supplemental institutional control implemented by others) Soil Grade and Cover Unfumed Slag Operable Unit 2 Record of Decision Soil Grade and Cover Unfumed Slag Operable Unit 2 Record of Decision, COEH Soil Ordinance, COEH Well Restrictions Groundwater Operable Unit 2 Record of Decision, COEH Soil Ordinance, COEH Well Restrictions Groundwater Operable Unit 2 Record of Decision, COEH Soil Ordinance Soil Querable Unit 2 Record of Decision, COEH Soil Ordinance Soil Custodial Trust Well Abandonment Program; COEH Well Groundwater Restrictions; CGWA (supplemental institutional control implemented by others) Groundwater	Proposed RemedyUnacceptable RiskProtect HH and EnvironmentOperable Unit 2 Record of DecisionSoilNo unacceptable risk (Table 4-1)South Plant Hydraulic Control: Upper Lake and Lower Lake Removal, Prickly Pear Creek Bypass and Realignment, wetland constructionSoilNo unacceptable risk (Table 4-1); IMs are reducting contaminant mass loadings and SoilOperable Unit 2 Record of DecisionSoilNo unacceptable risk (Table 4-1); SoilNo unacceptable risk (Table 4-1); remedity is protective in combination with CGWA and COEH restrictionsOperable Unit 2 Record of DecisionSoilNo unacceptable risk (Table 4-1)CGWA (supplemental institutional control implemented by others)GroundwaterReduce potential for contact with and ingestion of impacted groundwaterET Cover, Source Removal, Speiss Dross Slurry Wall, CGWA (supplemental institutional control implemented by others)SoilPrevent contact with impacted media (froundwaterGrade and CoverUnfumed Slag-Improve downgradient water quality through removal-Improve downgradient water quality over timeOperable Unit 2 Record of DecisionSoilNo unacceptable risk (Table 4-1)Operable Unit 2 Record of Decision, COEH Soil Ordinance, COEH Well RestrictionsSoilReduce potential for human contact with and ingestion of impacted groundwaterOperable Unit 2 Record of Decision, COEH Soil Ordinance, implemental institutional controlSoilReduce potential for human contact with and ingestion of impacted groundwaterOperable Unit 2 Record of Decision, COEH Soil Ordinance, implemental Program; CDEH Well Restrictions; CG	Media with Pequential Operable Unit 2 Record of Decision Soll Protect HH and Environment Achieve MCSs Coperable Unit 2 Record of Decision Soll No unacceptable risk (Table 4-1) macceptable risk (Table 4-1) To be evaluated upon transfer of property ownership Ves South Plant Hydraulic Control: Upper Lake and Lower Lake Removal, Privk Pear Creek Bypass and Realignment, wetland construction Soll No unacceptable risk (Table 4-1); Ms are reducting contaminant mass loadings and reducting contaminant mass loadings and sediments Ves - contaminated soll and sediments; Solface water Operable Unit 2 Record of Decision Soll No unacceptable risk (Table 4-1); Ms and COEH restrictions For be evaluated upon transfer of property ownership ves - contaminants and and sediments; Sufface water CGWA (supplemental institutional control implemented by others) Soll No unacceptable risk (Table 4-1); more downgradient Water water with impacted groundwater Contaminants concentrations are expected to decrease over time due to reductions in mass loading from remedy implementation Grade and Cover Unfurned Slag - more downgradient water quality through removal Yes Operable Unit 2 Record of Decision Soll No unacceptable risk (Table 4-1) Yes Operable Unit 2 Record of Decision, COEH Soil Ordinance, COEH Well Restrictions Soll No trunacceptable risk (Table 4-1) Yes <td>Media With Duraceptable Risk Protect HI and Environment Achieve MCS Control Sources Operable Umit 2 Record of Decision Soil No unacceptable risk (Table 4.1) To be creatured upon transfer of control sources Control Sources Control Sources South Plant Hydraulic Control Upper Lake and Lower Lake Soil Soil No unacceptable risk (Table 4.1) To be creatured upon transfer of control topper Lake and Lower Lake Soil No unacceptable risk (Table 4.1) To be creatured upon transfer of control topper Lake and Lower Lake Soil No unacceptable risk (Table 4.1) To be creatured upon transfer of control topper Lake and Lower Lake Soil No unacceptable risk (Table 4.1) Protect HI and Environment topper Lake Control Lopper Lake And Lake Soil No unacceptable risk (Table 4.1) Protect HI and Environment topper Lake Control Lopper Lake Control Lop</td>	Media With Duraceptable Risk Protect HI and Environment Achieve MCS Control Sources Operable Umit 2 Record of Decision Soil No unacceptable risk (Table 4.1) To be creatured upon transfer of control sources Control Sources Control Sources South Plant Hydraulic Control Upper Lake and Lower Lake Soil Soil No unacceptable risk (Table 4.1) To be creatured upon transfer of control topper Lake and Lower Lake Soil No unacceptable risk (Table 4.1) To be creatured upon transfer of control topper Lake and Lower Lake Soil No unacceptable risk (Table 4.1) To be creatured upon transfer of control topper Lake and Lower Lake Soil No unacceptable risk (Table 4.1) Protect HI and Environment topper Lake Control Lopper Lake And Lake Soil No unacceptable risk (Table 4.1) Protect HI and Environment topper Lake Control Lopper Lake Control Lop

Notes:

8E = the portion of parcel 8 located east of Highway 518

8W = the portion of parcel 8 located west of Highway 518

CGWA = Controlled Groundwater Area (supplemental institutional control implemented by others)

COEH = City of East Helena

ET = evapotranspiration

IM = interim measure

MCS = media cleanup standard

NA = not applicable

Table 6-3. Preliminary Summary of Performance Monitoring Requirements

Proposed Remedy Elements	Engineering/Activity Components	Applicable Media or Pathway	Remedial Objectives	Monitor
ENGINEERING CONTROLS				
Slag Pile - Grade and Cover	ET Cover over unfumed slag to reduce infiltration	Groundwater	 Reduce infiltration through unfumed Slag and subsequent 	CAMP Program (Grour
			leaching of metals from unfumed Slag	
	Slag pile regrading	Soil/Slag	- Maintain access to slag for sale	Slag pile slope grading
		Sediment	 Reduce potential for slag discharge to Prickly Pear Creek 	
	Surface water/stormwater collection	Surface water	 Reduce potential for slag and stormwater runoff from 	CAMP Program (Surface
			discharging to Prickly Pear Creek	
ET Cover System - Building Demolition, Utility	ET Cover to mitigate infiltration of precipitation, control	Groundwater	 Reduce infiltration of precipitation through impacted soil to 	CAMP Program (Grour
Abandonment, Subgrade Fill, Final ET Cover	wind erosion		groundwater	
			- Eliminate uncontrolled water collection and discharge to	
			groundwater through buried utilities	
			- Improve Site and down-gradient groundwater quality	
		Soil	- Reduce potential for direct contact of impacted media with	Not Applicable
		Sediment	human and ecological receptors	
	Surface water/stormwater collection	Surface water	- Reduce volume of stormwater and prevent stormwater	CAMP Program (Surface
			contact with impacted media	
South Plant Hydraulic Controls: Upper Lake	Reduce surface water loading to groundwater by removing	Groundwater	- Lower groundwater table to reduce groundwater contact	CAMP Program (Grour
and Lower Lake Removal; PPC Bypass; PPC	Upper Lake and Lower Lake		with impacted subsurface soil	
Realignment; wetland construction			- Reduce offsite flux	
	Establish natural stream channel flow and geomorphic	Surface water	- Improve surface water quality of PPC by reducing loading	CAMP Program (Surfac
	conditions within Smelter reach		from tributary sources	0 (
	Establish natural wetland/riparian conditions	Sediment	- Reduce impacted sediment discharge to PPC within Smelter	Not Applicable
			reach	
			- Prevent flooding	
Source removals - Excavation and Removal of	Remove through excavation impacted soil/sediment that	Groundwater	- Improve localized groundwater conditions within removal	CAMP Program (Grour
	could potentially leach to groundwater or surface water		areas	
Upper Lake Marsh, and Speiss Disposal Area	could potentially reach to groundwater of surface water		- Improve down-gradient groundwater quality	
opper Lake Marsh, and Speiss Disposal Area		Soil	- Reduce potential for human contact with impacted soil	Not Applicable
	Protectively manage removed soil under ET cover system	Surface water	- Improve surface water quality of PPC by reduced loading	CAMP Program (Surfac
	roteetively manage removed son under Er cover system		from tributary sources	CANIT TOBICITI (Surfac
		Sediment	- Reduce impacted sediment discharge to PPC within Smelter	Not Applicable
		Sediment	reach	
Speiss Dross Slurry Wall	Isolate impacted soil and prevent impacts to groundwater	Groundwater	- Improve localized groundwater conditions outside of slurry	CAMP Program (Grour
	isolate impacted son and prevent impacts to groundwater	Groundwater	wall area	CAMP FIOGRAM (GIOU
INSTITUTIONAL CONTROLS (ICs)			 Improve down-gradient groundwater quality 	
Custodial Trust Well Abandonment Program	Contact all residents with existing supply wells; Abandon	Groundwater	- Reduce potential for human contact with and ingestion of	Verification of Alternat
Custodial Trust well Abandonment Program		Groundwater		
	existing residential wells and/or provide alternative water		impacted groundwater	Treatment System
SUPPLEMENTAL ICs IMPLEMENTED BY OTHE	supply			
Controlled Groundwater Area (CGWA)	Implement and maintain program through CGWA process	Groundwater	- Reduce potential for human contact with and ingestion of	CAMP Program (Grour
controlled Groundwater Area (CGWA)	Apply groundwater use restriction areas	Groundwater	impacted groundwater	
COEH Well Restrictions	Implement and maintain program through COEH process	Groundwater	- Reduce potential for human contact with and ingestion of	CAMP Program (Grour
		Groundwater		CAN'E FIOGRAM (GIOUR
COEH Soil Ordinance	Apply groundwater use restriction areas	Soil	impacted groundwater Reduce notantial for human contact with impacted coil	Not Applicable
COEH Soil Ordinance	Implement and maintain program through COEH process	Soil	- Reduce potential for human contact with impacted soil	Not Applicable
	Apply property use restrictions		 Ensure that property use is appropriate to existing conditions 	5

Performance Monitoring Requirements					
itoring (Media)	Engineering Components Monitoring				
roundwater)	Cover Inspections and Maintenance				
ding plan	Slope inspections and comparison to				
	design parameters				
urface Water)	Cover Inspections and Maintenance				
roundwater)	Cover Inspections and Maintenance				
	_				
urface Water)					
roundwater)	Not applicable				
urface Water)	_				
roundwater)	Not applicable (see ET Cover System)				
urface Water)	_				
	_				
roundwater)	Not applicable				
ernative Water Supply or	Formally confirm all residents with				
	existing supply wells are notified				
roundwater)	Maintain CGWA program until conditions				
	are met				
roundwater)	Monitored through COEH program				
	Monitored through COEH LEAP program				