Site Geology

0 (In Feet) 4000

PHASE II RCRA FACILITY INVESTIGATION SITE CHARACTERIZATION WORK PLAN ASARCO EAST HELENA FACILITY SURFICIAL GEOLOGY IN THE EAST HELENA FACILITY AREA (U.S.G.S., 2005)

Hydrostratigraphy

Tertiary Tuff and Tuffaceous Sediments Unit

- Unit thins towards valley - >40 feet beneath CAMU and <25 at Chemet wells
- Clay and silt with lenses of loose sand and gravel
- No detections of As or Se in limited data set (2 wells)

Hydrogeological Questions

- Containment Effectiveness Is the Tertiary Tuff and Tuffaceous unit acting as a confining unit and are the slurry walled areas working?
- Will subsurface and smear-zone soils continue to act as a source?
- PRB and MNA effectiveness for Se and As

Contaminants of Concern

- Arsenic and Selenium exceed Primary MCLs onsite and offsite
- Sulfate/TDS and Manganese exceed Secondary MCLs onsite and offsite
- As, Se, and Sulfate Evaluated Further

November 2008

November 2009

Hydrometrics, Inc. Consulting Scientists and Engineers
V110022/GISIPLUME MAPSIAS_PLUME_COMPARISON.MXD

NOVEMBER 2008 - NOVEMBER 2009 - JUNE 2010 GROUNDWATER ARSENIC PLUME COMPARISON EAST HELENA FACILITY

Arsenic

• Some downgradient migration

• Onsite concentrations remain high

• Geochemistry indicates arsenic partitioned to soil acting as ongoing source to groundwater

Selenium

- High concentration plume migrating with process water (sulfate)
 - Geochemistry indicates mobile Se(VI) form
- Some offsite migration of Se(IV), which will partition to soil (similar to Arsenic)

COC Summary

- Arsenic and Selenium exceed Primary MCLs at site boundary and offsite areas
- Sulfate/TDS are tracers of site process waters
- As/Se Sources:
 - Primary historical source was smelter process water (now migrating offsite)
 - Residual sources are COCs in smear zone and saturated soils
 - Slag may or may not be an ongoing source

COC Summary (cont.)

Contaminant Plumes:

Arsenic

- Onsite concentrations may be decreasing in APSD area, but remain high

- Geochemistry indicates arsenic partitioned to solids are an ongoing source

- Central plume offsite migration is currently decreasing (as process water flushes off-site)

Selenium

 Likely present in several forms with different mobilities (Se(0), Se(IV), Se(VI))

- Se(VI) may be migrating with sulfate (i.e. process water plume)
- Selenium in soil likely includes insoluble Se(0) and adsorbed Se(IV)
- Data insufficient to determine long-term fate

Source Areas

Historical Source Remediation

Current Solid Waste Sources

Background Soils: As: 1-47 (9 avg.) mg/kg Se: <0.1-1.7 (0.43) mg/kg

Process Water Sources

Background Water: As: 0.002-0.021 mg/L Se: <0.001-0.007 mg/L

Summary of Sources

• Arsenic:

- Upper Ore Storage Area (high levels in saturated soil)
- Migrating process water from Lower Lake
- Soil contaminated from historical process waters
- Possibly Speiss area & APSDA saturated soils, slag, Lower Lake sediment
- Selenium:
 - Migrating process water from Lower Lake
 - Soil contaminated from historical process waters
 - Possibly slag, other solid waste storage/disposal areas
 - Additional characterization needed

Seaver Park Residential Wells

Selenium Plume Delineation

