

East Helena Facility

Corrective Measures Study Report

April 11, 2018

Agenda

- Welcome and Opening Remarks (EPA)
- Results to Date
 - Observed Groundwater Quality
 - ET Cover
 - Prickly Pear Creek
- CMS Report Overview
- Next Steps
- Questions
- Public Comment

ET Cover System (57 Acres)

Construction

- ET Cover System over West Portion Completed in 2015
- ET Cover System over East Portion Completed in 2016

Performance

- Vegetation growth on ET Cover System has been vigorous and is in good condition.
- Stormwater controls functioned as designed during runoff from rapid snowmelt earlier this year.
- Slopes along the ET Cover System boundary appear to be stable and have good vegetative cover and no visible erosion or sloughing.
- No indications that ET Cover System is not functioning as designed.

SMELTER DAM AND LOWER LAKE

CREEK UNDERCUTTING THE SLAG PILE

UPPER LAKE DIVERSION

Smelter Dam

PPC REALIGNMENT FLOOD PLAIN RECONSTRUCTION

RESERVOIR SEDIMENTS AND GROUNDWATER

Iron Rich Water

STREAM AND FLOODPLAIN RECONSTRUCTION

DAM AND SLAG REMOVAL

LOWER LAKE DEWATERING

LOWER LAKE DEWATERING

LOWER LAKE ADDITIONAL REMOVALS

LOWER LAKE AFTER REMOVALS

LOWER LAKE STREAM/ FLOODPLAIN AND WETLANDS

LOWER LAKE WETLANDS FILLING

LOWER LAKE WETLANDS NEARLY FULL

LOWER LAKE WETLANDS SPRING 2017

PLANTING LOWER LAKE WETLANDS JULY 2017

LOWER LAKE WETLANDS SPRING 2017

LOWER LAKE WETLANDS OCTOBER 2017

DEWATERING AND DROUGHT 2016

VEGETATION RESPONSE TO STREAM DIVERSION

STREAM RESPONSE TO DIVERSION

FLOODPLAIN AND WETLANDS RESPOND

FIRST SPRING – 2017 – GRASS OVERTAKES THISTLE

FLOODPLAIN SUMMER 2017

FLOODPLAIN AUGUST 2017

FLOODPLAIN AUGUST 2017

FLOODPLAIN EARLY OCTOBER 2017

FLOODPLAIN EARLY OCTOBER 2017

STREAM BEFORE DIVERSION

STREAM AFTER DIVERSION

LIVE TRANSPLANTS AND SALVAGED

Montana Environmental Trust Group, LLC Trustee of the Montana Environmental Custodial Trust

S. Bohcat
SUMMER 2017...

TRANSPLANTS JUNE 2017

TRANSPLANTS JULY 2017

TRANSPLANTS AUGUST 2017

ROCK RAMP BEFORE DIVERSION

FIRST FLOW THROUGH THE ROCK RAMPS

ROCK RAMPS FALL 2016

ROCK RAMP SUMMER 2017

ROCK RAMP MARCH 23, 2018

INLET CULVERTS March 23 Early Runoff

MARCH 23, 2018 EARLY RUNOFF

MARCH 25, 2018 – POST EARLY RUNOFF

MARCH 23, 2018 EARLY RUNOFF

MARCH 25, 2018 BMP TEST – PASSED

Corrective Measures Study (CMS) Report Overview

RCRA Corrective Action Process

- ✓ RCRA Facility Investigation (RFI)
- ✓ Preliminary Human Health and Ecological Risk Assessments (HHRA and BERA)
- Corrective Measures Study (CMS)
- EPA Selection of Final Remedy
- Corrective Measures
 Implementation

Public

Involvement

Corrective Measures Study (CMS)

- 1. Introduction
- 2. CMS Goals, Objectives and Scope
- 3. Current Conceptual Site Model
- 4. Risk Assessments
- 5. Selection and Evaluation of Corrective Measures Alternatives
- 6. Proposed Final Corrective Measure
- 7. Public Involvement Plan

Introduction

- Regulatory Framework
- Definitions
- Report Organization

"...the primary purpose of a CMS is **to investigate and evaluate potential alternative remedies to protect human health and the environment** from the release or potential release of hazardous waste or hazardous constituents from the Facility and to restore contaminated media to standards acceptable to EPA."

CMS Goals, Objectives, and Scope

- Presented and approved in CMS Work Plan
- Goals
 - Meet First Modification and all other applicable regulatory requirements for RCRA Corrective Action.
 - Analyze potential actions with consideration of known risks to actual or potential receptors .
 - Include in the evaluation potential actions that will create the greatest net environmental benefit and which are compatible with expected future use, considering finite Custodial Trust funds.

CMS Goals, Objectives and Scope

- EPA Objectives
 - Threshold Criteria
 - Protection of human health and the environment
 - Source Control
 - Media Cleanup Standards
 - Balancing Criteria
- Site-specific Remedial Action Objectives
 - Minimize long-term stewardship.
 - Maximize use of sustainable remediation approaches.
 - Allow continued asset recovery from slag pile.
 - Develop alternatives that are consistent with the Custodial Trust's purpose ...and, ultimately, to sell, transfer, facilitate the reuse of, or otherwise dispose of or provide for the long-term stewardship of the properties.

Anticipated Land Use Reflects City of East Helena Zoning

Figure 2-1 Reasonably Anticipated Land Use Former ASARCO East Helena Facility Corrective Measures Study Report East Helena, Montana

Current Conceptual Site Model

- Historic models based on:
 - RFI
 - 2011 Conceptual Site Model
 - Source Area Investigations
 - Information from IM implementation
 - Groundwater monitoring & modeling
 - Supplemental RFI surface soil investigation
- Updated, "post-IM" Conceptual Site Model used for final risk assessments and remedy evaluations

Risk Assessments

- Identify areas where remedial action is required
- Compares sampling results to protective criteria
 - Human Health
 - EPA Maximum Contaminant Levels (MCLs) for groundwater
 - EPA Regional Screening Levels (RSLs) for Soil
 - Ecological
 - Initially used criteria for multiple ecological receptors
 - Used Anaconda lead cleanup level protective of songbirds
- CMS Report updates previous risk assessments with post-IM data

Risk Assessment Evaluations and Results

- Human Health
 - Evaluated exposure to metals to groundwater, soil, sediment, and beef
 - Results
 - IMs addressed direct contact risk
 - Unacceptable risk only from ingestion of groundwater with metals above MCLs(within plume)
- Ecological Receptors
 - Evaluated exposure to metals in soil, water, sediments, plants and biota
 - Results
 - IMs addressed risk for over 400 acreas
 - Lead levels exceeded for song birds on Parcels 2A and 15

The Final Remedy Proposal is Based on Comprehensive Technical Evaluations

- <u>2011-2014</u>: Studies done to evaluate and design the IMs
 - Upper Lake Drawdown Test
 - MVS modeling
 - Stream flow assessments
- <u>2014-2015</u>: Identification and further investigation of key source areas
- <u>2015</u>: Identification and screening of remedial alternatives
- <u>2016</u>: Detailed alternative evaluation and final remedy proposal
- <u>2013-to date</u>: IM performance groundwater monitoring

Predictive Groundwater Modeling

Challenge in East Helena

Remediate a large area of contamination....

- Surface soil contamination across over 2000 acres of former ASARCO properties and surrounding area
- 3.5 million cubic yards (16 million tons) of slag
- Over 2.1 million cubic yards of contaminated soil
- Contaminated groundwater under ~150 acres

...using finite Trust funds

Initial CMS Evaluations

- High concentrations of metals in soil
 - Unacceptable risk from direct contact
 - Contaminating storm water and groundwater
- Groundwater with metals concentrations above MCLs
 - Drinking could be a health risk
 - Contaminated "plume" continuing to spread
- First question Could we remove all contaminated soils and slag?
 - Preliminary evaluations = not feasible
 - Huge volume
 - Huge cost

Next Question – Can We Take Groundwater Out of Soil?

- Preliminary evaluation showed "Pump & Treat" not feasible
 - Lots of wells, lots of water
 - Very expensive, over \$100MM
 - Long-term operating and maintenance required
 - Might not be effective, definitely not sustainable
- Drawdown tests and modeling indicated that draining upper/lower Lakes could result in sustainable drop in GWT
- Relocation of Prickly Pear Creek had additional benefit

Evaluations Focused on Areas Most Affecting Groundwater

- Investigations confirmed primary source areas:
 - Site-wide groundwater
 - West Selenium
 - North Plant
 - Speiss-Dross
- Potential remedial alternatives retained for further evaluation
 - Source removal
 - Permeable Reactive Barrier (PRB)
 - Slurry Wall
 - Focused Pump & Treat

West Selenium:

- Source Removal
- Slurry Wall

Groundwater modeling showed minimal additional environmental benefit

Final Detailed Evaluations with Slag Pile

Detailed Evaluations Weighed Potential Environmental Benefits

- Developed conceptual remedy designs
- Groundwater Fate & Transport model estimated potential benefits
- Remedy costs estimated

Selenium Mass Flux

Notes:

I) See Appendix B for detailed information regarding model operations and predictions

Figure 5-6 Predicted Change in Selenium Mass Flux Across the Facility Boundary Former ASARCO East Helena Facility Corrective Measures Study Report East Helena, Montana

Created by:

2) mg/day = milligrams per day;WSA = West Selenium Area.

NewFields

3) Results are from NewFields (2016a).

Selenium Contours in Slag Pile **Simulations**

. CONTRACTOR DE LA CONTRACTA D

Created by

CMS **Evaluated 3** Conceptual Designs For Slag Pile Cover

SOL COVER: UNFUMED MOUND SURFACE AREA REMAINING SOIL COVER AREA 364,000 REQD SOIL VOLUME, 3-FT ET COVER-96,700 CY

ADDITIONAL NOTES 31 TO 3.51 NEAR NORTHEAST CORNER 61 SLOPE ON EAST RAMP 2% - 5% SLOPES FOR DRAINAGE

Figure 6-1

- 11

10

0

Slag Pile Grading Plan Former ASARCO East Helena Facility Corrective Measures Study Report East Helena, Montana

Ch2m

500671189 64.07.01 EH_sieg_pie_grading_pien.ai 1/17

Proposed Final Corrective Measures

Proposed Final Remedy: Engineering Controls		Threshold Criteria			
	Remedy In Place	Protective	Source Controlled	Attain Media Cleanup Standards	
Maintain ET Cover	\checkmark	\checkmark	\checkmark	\checkmark	
South Plant Hydraulic Control	\checkmark	\checkmark	\checkmark	TBD	
Focused Source Removal	\checkmark	\checkmark	\checkmark	\checkmark	
Maintain CAMUs	\checkmark	\checkmark	\checkmark	\checkmark	
Speiss-Dross Slurry Wall	\checkmark	\checkmark	\checkmark	TBD Outside Wall	
Slag Pile Cover		\checkmark	\checkmark	\checkmark	

Montana Environmental Trust Group, LLC Trustee of the Montana Environmental Custodial Trust

Section 6: Proposed Final Corrective Measures

Proposed Final Remedy: Institutional Controls		Threshold Criteria			
	Remedy In Place	Protective	Source Controlled	Attain Media Cleanup Standards	
Private Well Abandonment Program	\checkmark	\checkmark	N/A		
Deed Restrictions	\checkmark	\checkmark	1	N/A	

Institutional Controls Implemented By Others

CGWA	\checkmark	\checkmark	1	N/A
COEH Well Restrictions	\checkmark	\checkmark	N/A	
Soil Ordinance	\checkmark	\checkmark	\checkmark	\checkmark

Proposed Final Remedies Meet Site-specific Remedial Action Objectives

- ✓ Minimize long-term stewardship.
 - No active operations.
 - Natural cover and PPC realignment require less maintenance than man-made materials/technologies.
- ✓ Eliminate the need to manage and treat stormwater.
- ✓ Maximize use of sustainable remediation approaches.
 - Natural systems.
 - > No energy requirements.
 - No emissions.
- ✓ Develop and evaluate alternatives that allow continued asset recovery from slag pile.
 - Design will accommodate future recovery.
 - Cover can be modified in future if market conditions change.

Public Involvement Plan

- Meaningful public involvement is an important part of
- Previous activities
 - Beneficiary meetings
 - Groundwater Technical Working Group
 - Public Town Hall Meetings
- Contact Information
- Future Activities

Next Steps

- EPA consideration of Public Comments
- EPA final approval of CMS Report
- Corrective Measures Implementation (CMI)
 - Prepare CMI Work Plan for EPA review & approval
 - CMI
 - Design & construction of Slag Pile Cover
 - Institutional Controls (land-use restrictions)
 - Operation and Maintenance
 - Long-term Performance Monitoring

QUESTIONS AND PUBLIC COMMENT

Montana Environmental Trust Group, LLC Trustee of the Montana Environmental Custodial Trust